
Recently I've been building a couple of supplimental build tools in Python for

enhancing the development process of the iOS application I work on. I've been

trying to make these tools to be appealing for other developers to use and

integrate into their systems as well. I see having CI and unit tests as a core part

of this goal. I started using CircleCI for my continuous integration environment

for these projects. This was working out very well until I started working on

some code that relies on a couple of OS X specific APIs. Due to that requirement

I was unable to continue using the Linux platform for testing this code. Luckily

CircleCI provides OS X instances for open source Mac and iOS projects. I put in a

request and was granted access to using OS X instances for building this Python

tool. However, I immediately ran into issues with getting the tool to be installed

and have my tests run. CircleCI doesn't provide engineering support for free

accounts, so I had to work all this out on my own, hopefully you can use this as

a guide to also be able to support building Python on OS X build instances on

CircleCI.

The Python tool I am writing relies on the pyobjc framework. This allows Python

to make calls into Cocoa and the various other frameworks provided by Apple

on OS X. This comes pre-installed on OS X with the system Python version,

2.7.10. Since an official sunset date has been set for Python 2, the code is

written to also support Python 3. Since Python 3 doesn't come as part of the

default OS X installation, this adds another requirement to the build

environment that is needed. In addition to the Python packages that are used by

this tool, all of the tooling that is needed to run the unit tests and additional

checks that gets validated as part of the build. This ultimately generates the

following list of requirements:

virtualenv

pyenv

tox

tox-pyenv (tox plugin to work with pyenv)

Python 3

pyobjc (for Python 3)

Building Python modules on

CircleCI OS X instances

Background

• 

• 

• 

• 

• 

• 

http://circleci.com
https://pythonhosted.org/pyobjc/


coverage.py

Python 2 (installed separate from the system Python version by pyenv)

In addition to this list, there are a few more things that I use:

danger

codeclimate-test-reporter

pylint

While all of these packages and tools can be installed easily on the Ubuntu

instances that are provided by CircleCI, the setup process to accomodate this

was not as easy for OS X. The rest of this post is a guide as to how I was able to

set up an environment that allowed me to build and run the unit tests for a

Python CLI application that uses OS X specific APIs. It took me a whole day and

a couple dozen attempts at this before I was able to get it working, and

hopefully can someone else at least that much time in the future.

The configuration of CircleCI instances of OS X seems to assume that you are

going to be building something using the Xcode build system. While this is true

for the majority of iOS or OS X software, that isn't true if you are relying on

existing systems on OS X (such as interfacing with Cocoa frameworks through

pyobjc), as I am doing here. To ensure that the CircleCI job will not immediately

fail, you must include an Xcode project file with at least one valid target in you

repo to not cause the job to fail immediately. This target doesn't have to do

anything, as the setup and test execution will be over-ridden in the 

circle.yml  file to run the Python specific test framework instead.

As per CircleCI's documentation, they do not support the ability to dictate

specific language versions on OS X. So, to handle the install process of Python

and the necessary components needed, the following commands will need to be

run as part of the pre:  section of the machine:  configuration in the 

circle.yml  file.

• 

• 

• 

• 

• 

Xcode Project File

CircleCI Instance Configuration

Machine

http://danger.systems
https://github.com/codeclimate/python-test-reporter
https://www.pylint.org


First step involves exporting the necessary paths needed for the rest of the

build. This requires that the brew install path and the user's Python install

path is included.

Next, for the installation of virtualenv  into the user's Python path. This

is necessary as virtualenv  will be invoked as an inferred build step later

in the build process.

After installation, create a symlink from the installed executable for 

virtualenv  into brew's install path. This is needed to ensure that it will

be seen by the system for later execution.

This step may not be required for all, but I was running into an issue that

prevented the brew update  command from being run without causing a

failure. As a result this command was taken from an issue on the Homebrew

GitHub repo to resolve the error.

Finally, perform a update to the brew  packages list. I found this necessary

to ensure that the packages I need are available.

To install the necessary dependencies, I am using a target in my Makefile to

invoke all the necessary commands and install what is needed to properly

perform a build and execute the tests. For this I am overriding any inferred

behavior on Circle's part for installation with the following:

This invokes the Makefile target that will install all of the components that

are needed.

This performs some extra setup with pyenv to be done in preparation for

using tox  as part of running the unit tests.

The target in the Makefile will perform the following commands:

machine:

  pre:

    - export PATH=/usr/local/bin:$PATH:/Users/distiller/Library/Python/2.7/bin

    - pip install --user --ignore-installed --upgrade virtualenv

    - ln -s $HOME/Library/Python/2.7/bin/virtualenv /usr/local/bin/virtualenv

    - cd "$(brew --repository)" && git fetch && git reset --hard origin/master

    - brew update

1. 

2. 

3. 

4. 

5. 

Dependencies

dependencies:

  override:

    - make install-deps

    - pyenv local 2.7.10 3.5.1

1. 

2. 



There are a couple of important things to take away here that are

specific to both the way that the OS X instances on CircleCI are setup

and to how I have configured tox

User vs System Installation of Python Packages:

You will notice that all of the Python 2 packages (installed by pip ) are invoked

with the --user  flag, whereas the Python 3 packages (installed by pip3 )

are not. The significance is that since Python 2 and pip  come as part of OS X,

we are leveraging the existing install to act as the default version of Python to

use and not require installing again. Since Python 3 is being installed by

Homebrew, it will be able to install packages into the default location.

Duplicate Installation of Python:

After installing all of the packages needed, I am invoking pyenv  to install both

version 2.7.10  and 3.5.1  to be installed and registered for Python

environments. This is necessary for use with the tox-pyenv  plugin for tox

that allows for tests to be executed in an array of different versions of Python.

# brew commands

$ brew install pyenv

$ brew install python3

# pip commands

$ pip install coverage --user

$ pip install tox --user

$ pip install tox-pyenv --user

$ pip install codecoverage-test-reporter --user

$ pip install pylint --user

$ pip install pyobjc-core --user

$ pip install pyobjc-framework-Cocoa --user

# pip3 commands

$ pip3 install coverage

$ pip3 install tox

$ pip3 install tox-pyenv

$ pip3 install codecoverage-test-reporter

$ pip3 install pylint

$ pip3 install pyobjc-core

$ pip3 install pyobjc-framework-Cocoa

# pyenv commands

$ pyenv install 2.7.10

$ pyenv install 3.5.1

# gem commands

$ gem install danger

1. 

1. 



This enables two types of Python environments, the "Host" version of Python

and the "Guest" version of Python. I recommend this approach when using 

tox  so that you can install all of the dependencies into the "Host" version of

Python (the system version or one installed by Homebrew), and inherit them

into the "Guest" version of Python (the versions installed by pyenv ). The

"Guest" versions of Python are used to run the unit tests in by tox . This

separation of installed packages makes it easier to deal with on a CircleCI

instance. To do this, you will have to enable the sitepackages  option in your 

tox.ini  configuration file.

Invokation of gem install  without the --user  flag:

One thing to note is while the system version of Python is used on the OS X

build instances, that is not true of Ruby. I am not sure of the exact configuration

of which version of Ruby or RubyGems is used, but passing the --user  flag to

install a Gem caused it to be installed to a location outside of the defined 

PATH  variable, and thus unable to be executed.

As done with the dependencies, we are going to force an override to the system

to run our own set of commands as part of the test phase of the CircleCI job.

This will allow you to execute the Python specific testing framework instead of

the job inferring that xcodebuild  should be invoked.

This Makefile target will:

Invoke tox  to run the unit tests registered as the test suite in my 

setup.py  file.

After the tests get run, this will run pylint  to analyze the source code

and find any defects with it.

Then it will execute the generation of a report of the test coverage. This is

to determine that the unit tests are covering all of the code paths that exist

in the source.

Finally it will run danger  to see if this run was from an active pull request.

If so, then danger  will report information about the results of the test and

build back to the pull request so that the contributor gets feedback on their

changes beyond a pass/fail from the CI.

1. 

Test

test:

  override:

    - make ci

1. 

2. 

3. 

4. 



Beyond that, the behavior of the uploading of artifacts and test reporting works

the same way that it does on the Linux instances of CircleCI. I was using make

to wrap most of the heavy lifting around executing various commands with

building my code, I would recommend usage of it, or another tool to make the

various commands you may need to run easier to handle rather than listing

them all in the circle.yml  file. The major take-away I had from this

experience was that, unlike the Linux instances, you should expect to install

almost everything yourself on the OS X instances with CircleCI. Take advantage

of Homebrew and whatever other package manager you need to install what

you need to perform a build.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog 

[ home | parent | top ]

https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Building Python modules on CircleCI OS X instances
	Background
	Xcode Project File
	CircleCI Instance Configuration
	Machine
	Dependencies
	Test


