
This is a tutorial that will demonstrate two methods for converting a static

library into a dynamic library for use on iOS and OS X. If you are attempting to

do this with a library that is available via CocoaPods, then I recommend that you

use CocoaPods to do this work for you. The methods I am going to describe

should only be used if there are no other options.

##What are static and dynamic libraries? First thing to understand is the

differences between using static and dynamic libraries. I have a previous blog

post that goes into detail about this. You should be aware that there have been

some performance impacts with loading many dynamic libraries when an app

gets launched. This is due to the need for the amfi  daemon to read and

validate the contents of the library files to ensure their code signatures match

the signing identify of the app that is asking for them to be loaded. Once that is

done the library can be safely opened by the dynamic linker and loaded into

memory for the app.

For the methods, we are going to use a sample library that was used in the

linked post above:

foo.h

foo.c

Converting Static Libraries to

Dynamic Libraries for iOS

#ifndef __foo__bar__

#define __foo__bar__

#include <stdio.h>

int fizz();

#endif /* defined(__foo__bar__) */

https://pewpewthespells.com/blog/static_and_dynamic_libraries.html
https://pewpewthespells.com/blog/static_and_dynamic_libraries.html


To follow along with the example, I am going to generate a static library from

the library code by calling:

##Method 1: Manual Conversion The scenario is that you get a static library as

part of a third-party SDK you have to integrate and you are currently building

your app for iOS 8 and above. You would prefer to dynamically link this library to

your app, as that is how you are building all of your dependency code now.

First step is to identify the type of library that you are working with. Most static

libraries that are distributed are going to be "fat". This means that they contain

code for multiple architectures in them. You can identify these library files by

using the lipo  command.

You will have to extract each architecture slice from the "fat" library file. I

recommend doing this to a new subdirectory along-side the "fat" library you are

working with, this is to make later steps easier. To extract a particular

architecture slice, we are going to use the lipo  tool again:

Once you have performed that command, you can verify the extracted file is the

correct architecture slice:

Now you should be working with an archive file, this can be verified through the 

file  command:

#include "foo.h"

#include <CoreFoundation/CoreFoundation.h>

int fizz() {

    CFShow(CFSTR("buzz"));

    

    return 0;

}

$ clang -c foo.c -o foo.o

$ libtool -static foo.o -o libfoo.a -framework CoreFoundation

$ lipo -info libfat.a 

Architectures in the fat file: libfat.a are: x86_64 arm64 

$ mkdir -p x86_64

$ lipo libfat.a -extract x86_64 -output ./x86_64/libfoo.a

$ lipo -info ./x86_64/libfoo.a 

input file libfoo.a is not a fat file

Non-fat file: libfoo.a is architecture: x86_64



For the next step we are going to enter the same directory as the architecture

slice we extracted. Then we are going to use the ar  utility to extract all of the

object files in the library archive. When using the -x  flag for extraction, the

utility will write all of the object files in the library archive to the current

directory. This is why I recommend creating separate directories for each

architecture slice you plan on converting.

This will extract all the compiled executable code out of the archiv into the

individual object files. With these object files, you can use the linker to build a

new dynamic library.

The command above uses libtool  to build a dynamic library from all of the

.o  object files and to give the created library 

libfoo_dynamic-x86_64.dylib . You will need to supply any additional 

-framework  or -l  flags here that the library normally relied on. This is

because these flags will no longer be used to link against the app, they will now

link against the new dynamic library you have created.

You have now converted a static library to a dynamic library. You should repeat

this process for each of the architecture slices in the original static library file.

Once you have completed that, you can use the following lipo  command to

create a new "fat" dynamic library:

This new "fat" dynamic library can now be used as to be linked against as part

of your iOS or OS X application. If you encounter any linker errors where the

linker cannot resolve symbols with the newly created dynamic library, then you

will have to use the second method to convert the static library to a dynamic

library.

##Method 2: Wrapping The method of wrapping a static library to use it as a

dynamic library is by far the most reliable and easy method to do.

Create a new project file in Xcode. This is going to contain the dynamic

framework that will "wrap" the static library.

$ file ./x86_64/libfoo.a

libfoo.a: current ar archive random library

$ cd x86_64

$ ar -x libfoo.a

$ libtool -dynamic *.o -o libfoo_dynamic-x86_64.dylib -framework CoreFoundation -lSystem

$ lipo -create ./x86_64/libfoo_dynamic-x86_64.dylib ./arm64/libfoo_dynamic-arm64.dylib -

1. 



Choose a "Cocoa Touch Framework" as the target type and complete the

new project and target creation process.

Add the static library that you want to convert to the project. You should

also add any headers and resources that come with the static library/

framework.

Under the "Build Settings" of the dynamic library target: 

Add the -all_load  flag to " OTHER_LDFLAGS ".

Add the path to the static library to the FRAMEWORK_SEARCH_PATH  and

LIBRARY_SEARCH_PATH  fields.

If the static library doesn't contain slices for specific architectures, the

linker will raise a warning about it. You can silence this type of warning

by using the -no_arch_warnings  to " OTHER_LDFLAGS ".

Under "Build Phases" of the dynamic library target: 

Add the static library to the "Link Binary With Libraries" phase.

Add the headers you want to have exported as public to the "Headers"

phase.

Add the resources you want to be included with the framework to the

"Copy Bundle Resources" phase.

Build the dynamic framework target

There may be a bunch of build errors that occur. Many of these will be

missing symbol errors coming from the linker. To correctly resolve this you

will need to go back to "Build Phases" and expand the "Link Binary With

Libraries" phase again. Here you will have to add all the system libraries

that the static library expects to be linked with. The third-party library

should give you a list of what libraries will be needed.

Build the dynamic framework again, this time it should be able to succeed.

This should produce a dynamic framework that includes all the necessary code

of the static library. This method is going to be necessary for some libraries that

don't export some of the symbols that they use and thus make the first method

not viable. The second method is also a nicer way to abstract the libraries that

you use.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog 

2. 

3. 

4. 

◦ 

◦ 

◦ 

5. 

◦ 

◦ 

◦ 

6. 

7. 

8. 

https://cash.me/$samanthademi
https://cash.me/$samanthademi


[ home | parent | top ]


	Converting Static Libraries to Dynamic Libraries for iOS

