
Recently I wrote my own NeXTSTEP plist parser and serializer in Python. It was

an educational exercise and if you are curious about the exact implementation

details of that you can go check out the code here. However this post is not

about how to write your own parser, in-fact I strongly recommend that you do

not. This post is to give you a word of warning about some common

misconceptions around how easy it is to parse NeXTSTEP plists using Foundation

classes like NSDictionary.

Most of you are probably familiar with the fact that Xcode uses NeXTSTEP plists

for the format when serializing project files. If you have ever done your own

exploration of the project file you may be familiar with the fact you are able to

read these files off disk very easily using NSDictionary or NSPropertyList (or the

CoreFoundation counterparts: CFDictionary and CFPropertyList). This works

great, you can easily examine the contents and structure without having to fight

with loading any of Xcode’s private frameworks for doing this. To test this out

I’m going to create a new XML plist file:

Here is the plist, and to verify that this is a valid XML plist I will run it through

plutil :

Everything seems to check out as being ok. I wrote a small program that will

parse plist using NSDictionary to load it from a file and print out the key:value

pairs written in the plist.

Dangers of NeXTSTEP Plists

$ cat xml

<plist version="1.0">

<dict>

 <key>hourglass</key>
23
F3 <string> </string>

</dict>

</plist>

$ plutil -lint xml

xml: OK

https://github.com/samdmarshall/pbPlist

I am going to compile it

clang main.m -framework Foundation -o plist_tester and when run,

this is the output I get:

We can write the emoji in the file because XML style plists support UTF-8

encoding. Now let’s do the same thing but with a NeXTSTEP plist.

Here is the NeXTSTEP plist version of that XML plist that was first created.

NeXTSTEP plists are serialized in ASCII. This means that for us to write

representations of unicode characters we must instead write the escaped

version of the character sequence. Now I’m going to add this plist to the

program:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {

 @autoreleasepool {

 NSString *runningDirectory = [[[[NSProcessInfo processInfo] arguments] firstObje

 NSArray *plistTypes = @[@"xml"];

 for (NSString *typeName in plistTypes) {

 NSLog(@"Plist Type: %@", typeName);

 NSString *plistPath = [runningDirectory stringByAppendingPathComponent:typeN

 NSDictionary *plist = [NSDictionary dictionaryWithContentsOfFile:plistPath];

 NSLog(@"Contents:");

 for (NSString *keyString in [plist allKeys]) {

 NSLog(@"\t%@ = %@", keyString, plist[keyString]);

 }

 NSLog(@"=======================");

 }

 }

 return 0;

}

$./plist_tester

plist_tester[] Plist Type: xml

plist_tester[] Contents:
23
F3plist_tester[] hourglass =

plist_tester[] =======================

$ cat nextstep

{

 "hourglass" = "\U23F3";

}

NSArray *plistTypes = @[@"xml", @"nextstep"];

Then compile and run this again and I get the resulting output:

Now let’s try adding another emoji to the plist:

Both plists have been updated to have a panda emoji. Running the program

again yields this output:

$./plist_tester

plist_tester[] Plist Type: xml

plist_tester[] Contents:
23
F3plist_tester[] hourglass =

plist_tester[] =======================

plist_tester[] Plist Type: nextstep

plist_tester[] Contents:
23
F3plist_tester[] hourglass =

plist_tester[] =======================

$ cat xml

<plist version="1.0">

<dict>

 <key>hourglass</key>
23
F3 <string> </string>

 <key>panda</key>
01F
43C <string> </string>

</dict>

</plist>

$ plutil -lint xml

xml: OK

$ cat nextstep

{

 "hourglass" = "\U23F3";

 "panda" = "\U0001F43C";

}

$ plutil -lint nextstep

nextstep: OK

$./plist_tester

plist_tester[] Plist Type: xml

plist_tester[] Contents:
23
F3plist_tester[] hourglass =

01F
43Cplist_tester[] panda =

plist_tester[] =======================

plist_tester[] Plist Type: nextstep

plist_tester[] Contents:

plist_tester[] panda = F43C
23
F3plist_tester[] hourglass =

plist_tester[] =======================

The panda emoji is not going to display from a NeXTSTEP plist because it

doesn’t know how to interpret escaped unicode characters that are longer than

4 hex digits. So while the hourglass can be parsed, only the 0001 of the

0001F43C will be parsed and converted into the corresponding unicode

character. The following is a section of code taken from CFOldStylePlist.c which

is part of CoreFoundation’s implementation of reading NeXTSTEP plists:

http://www.opensource.apple.com/source/CF/CF-1153.18/CFOldStylePList.c

static UniChar getSlashedChar(_CFStringsFileParseInfo *pInfo) {

 UniChar ch = *(pInfo->curr);

 pInfo->curr ++;

 switch (ch) {

 case '0':

 case '1':

 case '2':

 case '3':

 case '4':

 case '5':

 case '6':

 case '7': {

 uint8_t num = ch - '0';

 UniChar result;

 CFIndex usedCharLen;

 /* three digits maximum to avoid reading \000 followed by 5 as \5 ! */

 if ((ch = *(pInfo->curr)) >= '0' && ch <= '7') { // we use in this test the

 pInfo->curr ++;

 num = (num << 3) + ch - '0';

 if ((pInfo->curr < pInfo->end) && (ch = *(pInfo->curr)) >= '0' && ch <=

 pInfo->curr ++;

 num = (num << 3) + ch - '0';

 }

 }

 CFStringEncodingBytesToUnicode(kCFStringEncodingNextStepLatin, 0, &num, size

 return (usedCharLen == 1) ? result : 0;

 }

 case 'U': {

 unsigned num = 0, numDigits = 4; /* Parse four digits */

 while (pInfo->curr < pInfo->end && numDigits--) {

 if (((ch = *(pInfo->curr)) < 128) && isxdigit(ch)) {

 pInfo->curr ++;

 num = (num << 4) + ((ch <= '9') ? (ch - '0') : ((ch <= 'F') ? (ch -

 }

 }

 return num;

 }

 case 'a': return '\a'; // Note: the meaning of '\a' varies with -traditiona

 case 'b': return '\b';

 case 'f': return '\f';

 case 'n': return '\n';

 case 'r': return '\r';

 case 't': return '\t';

 case 'v': return '\v';

 case '"': return '\"';

 case '\n': return '\n';

 }

 return ch;

}

This method is used when an escaped character sequence is encountered, the

intention is to translate the escaped representation from ASCII into Unicode. You

will see in the case of the escaped U it will parse up to 4 hex digits to

compose the character.

Now you may be wondering how is this possible since Xcode seems to handle all

sorts of emoji. Xcode’s implementation of deserializing the NeXTSTEP plist files

is different from that of what is used in (Core)Foundation. There are

assumptions made about what the output encoding is assumed to be, as well as

supporting writing out this format of plist when (Core)Foundation does not. The

NeXT/OpenStep plist format assumes that strings are written as ASCII, whereas

Cocoa assumes strings are written in Unicode. As a result, Cocoa will happily

read unescaped Unicode data from NeXT/OpenStep plists (while the parser will

fail to read properly escaped sequences longer than 4 digits). This makes the

format invalid as it is no longer ASCII data on disk, however will still be parsed

correctly by classes like NSDictionary because of Cocoa’s assumption that all

strings are Unicode.

I wrote this post as a means to document some unusual behavior around

parsing this legacy format that is still highly used today, and I have filed a radar

to add more documentation around this behavior for the classes that would be

used.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

rdar://23454207
https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Dangers of NeXTSTEP Plists

