
There has been a bug that has bothered me for the last 10 years. I first

encountered this bug on 10.4 and it involves the man page view "info". If you

want to follow along at home this is a very simple crash to reproduce. Open a

new terminal window, type in 'info whois' (or the name of any other program

that has a man page), then resize the terminal window to be very small. If you

are to then expand the window back out to a normal size you will see that info

has crashed.

Reproducing these steps with lldb attached produces this:

This snippet of assembly can be translated into the following C code:

This is trying to scan a cstring for any occurrences of the escape character

'\033' (hex representation: 0x1b).

On Mavericks (10.9), the shipped version of info is 4.8, which was published in

2004. I downloaded the old source code to this to see if I could find the exact

crash a bit easier.

After building it from source I repeated the steps to cause the crash and this

time lldb greeted me with the following:

Fixing Old Bugs

* thread #1: tid = 0x96b4bb, 0x000000010af487c7 info`___lldb_unnamed_function7$$info + 1

frame #0: 0x000000010af487c7 info`___lldb_unnamed_function7$$info + 1291

info`___lldb_unnamed_function7$$info + 1291:

 -> 0x10af487c7: movq (%r15), %rdi

 0x10af487ca: movl $0x1b, %esi

 0x10af487cf: callq 0x10af62a36 ; symbol stub for: strchr

 0x10af487d4: testq %rax, %rax

strchr(%r15, '\033')

This matches the assembly given by the first crash using the version shipped by

Apple. The issue is glaring, this conditional statement has two parts that are

OR'd but are dependent on each other to be successful.

Checking if the local variable entry is not NULL, and then if the entry is

inverted.

Checking if there are escapes and if the entry text contains any escape

characters.

Since they are OR'd, even if the first part of the conditional fails on "entry" not

being NULL, it will still try to check the text contents of the entry and result in a

NULL dereference. To verify this, I looked at entry in lldb and sure enough:

There is the null pointer which will be dereferenced and cause our crash. Now

this seems like a straight forward fix, by separating out the conditional logic to

evaluate the entry value before any other part we avoid the dereference and

crash entirely. However, since 4.8 is from 2004, it might be better to check the

latest shipped version for this crash instead and then file a bug report against

apple to update the binary to stop this crash.

The latest official version is 5.2, which was published in September 2013. I

downloaded the source code to that to see if this was fixed. After repeating the

steps I found something new:

* thread #1: tid = 0x96d28e, 0x000000010c4f4a7d ginfo`display_update_one_window(win=0x00

frame #0: 0x000000010c4f4a7d ginfo`display_update_one_window(win=0x00007f8391d03d40) + 1

 300 happen if the window is shrunk very small.) */

 301 if ((entry && entry->inverse)

 302 /* Need to erase the line if it has escape sequences. */

 -> 303 || (raw_escapes_p && strchr (entry->text, '\033') != 0))

 304 {

 305 terminal_goto_xy (0, line_index + win->first_row);

 306 terminal_clear_to_eol ();

1.

2.

(lldb) p entry

(DISPLAY_LINE *) $124 = 0x0000000000000000

Same crash reason, but caused by different code this time. It is possible that

since it had gone through a major version update that it could have entirely new

code. Another bad memory access, so first thing to check is the variable win .

That looks ok, but to make sure we are looking at a valid pointer, we should

print the dereferenced value in the debugger to be sure, then check what we

are accessing on that line.

* thread #1: tid = 0x970058, 0x000000010a717db5 ginfo`window_scan_line(win=0x00007fb6f95

frame #0: 0x000000010a717db5 ginfo`window_scan_line(win=0x00007fb6f9503db0, line=0, phys

 1785 void *closure)

 1786 {

 1787 mbi_iterator_t iter;

 -> 1788 long cpos = win->line_starts[line] - win->node->contents;

 1789 int delim = 0;

 1790 char *endp;

 1791

(lldb) p win

(WINDOW *) $125 = 0x00007fb6f9503db0

(lldb) p *win

(WINDOW) $126 = {

 next = 0x0000000000000000

 prev = 0x0000000000000000

 width = 97

 height = 0

 first_row = 0

 goal_column = 18446744073709551615

 keymap = 0x00007fb6fa01d200

 node = 0x00007fb6f9700370

 pagetop = 27

 point = 1000

 line_map = {

 node = 0x00007fb6f9700370

 nline = 0

 size = 80

 used = 0

 map = 0x00007fb6f96025c0

 }

 modeline = 0x00007fb6f9700990 "-----Info: (*manpages*)whois, 144 lines --18%--------

 line_starts = 0x0000000000000000

 line_count = 0

 log_line_no = 0x00007fb6fb003600

 flags = 5

}

Again, another null-dereference, this time from the member line_starts .

Now we are in the most recent version of code fixes can be added to stop these

crashes from happening. By adding a new conditional check to the start of this

function:

####Bug #1

Original:

Patch:

This has fixed the first bug. To verify that it has been successfully patched, we

are going to run through the steps again.

int

window_scan_line (WINDOW *win, int line, int phys,

 void (*fun) (void *closure, long cpos, size_t replen),

 void *closure)

{

 mbi_iterator_t iter;

 long cpos = win->line_starts[line] - win->node->contents;

 int delim = 0;

 char *endp;

 /*

 ...

 */

 return cpos;

}

int

window_scan_line (WINDOW *win, int line, int phys,

 void (*fun) (void *closure, long cpos, size_t replen),

 void *closure)

{

 mbi_iterator_t iter;

 long cpos = 0;

 if (win->line_starts != NULL) { // the new check to stop null-dereference

 cpos = win->line_starts[line] - win->node->contents;

 /*

 ...

 */

 }

 return cpos;

}

Well, this time it is crashing outside of the scope of the process. Running a

backtrace on the crash should reveal more information:

The backtrace shows that the problem is being caused in frame 4, and the

resulting frames hint at an over-release problem. Jumping back to frame 4 in the

debugger seals it.

By checking the "windows" variable in that scope:

* thread #1: tid = 0x9723b1, 0x00007fff8aeec866 libsystem_kernel.dylib`__pthread_kill +

frame #0: 0x00007fff8aeec866 libsystem_kernel.dylib`__pthread_kill + 10

libsystem_kernel.dylib`__pthread_kill + 10:

 -> 0x7fff8aeec866: jae 0x7fff8aeec870 ; __pthread_kill + 20

 0x7fff8aeec868: movq %rax, %rdi

 0x7fff8aeec86b: jmp 0x7fff8aee9175 ; cerror_nocancel

 0x7fff8aeec870: retq

(lldb) bt

* thread #1: tid = 0x9723b1, 0x00007fff8aeec866 libsystem_kernel.dylib`__pthread_kill +

 * frame #0: 0x00007fff8aeec866 libsystem_kernel.dylib`__pthread_kill + 10

 frame #1: 0x00007fff8e70035c libsystem_pthread.dylib`pthread_kill + 92

 frame #2: 0x00007fff8ad44b1a libsystem_c.dylib`abort + 125

 frame #3: 0x00007fff92fa607f libsystem_malloc.dylib`free + 411

 frame #4: 0x000000010bf2d043 ginfo`window_new_screen_size(width=0, height=0) + 323 a

 frame #5: 0x000000010bf2aba3 ginfo`reset_info_window_sizes + 83 at signals.c:174

 frame #6: 0x000000010bf2aa42 ginfo`info_signal_proc(sig=<unavailable>) + 258 at sign

 frame #7: 0x00007fff8e5ca5aa libsystem_platform.dylib`_sigtramp + 26

 frame #8: 0x00007fff8aeed9f1 libsystem_kernel.dylib`read + 9

 frame #9: 0x00007fff784e9420 libsystem_c.dylib`__strerror_ebuf + 16

 frame #10: 0x000000010bf229ac ginfo`info_read_and_dispatch + 204 at session.c:215

 frame #11: 0x000000010bf22887 ginfo`display_startup_message_and_start [inlined] info

 frame #12: 0x000000010bf22868 ginfo`display_startup_message_and_start + 40 at sessio

 frame #13: 0x000000010bf1a56e ginfo`single_file(argc=<unavailable>, filename=<unavai

 frame #14: 0x000000010bf19ef5 ginfo`main(argc=<unavailable>, argv=0x00007fff53cefba0

 frame #15: 0x00007fff8e8c15fd libdyld.dylib`start + 1

(lldb) frame select 4

frame #4: 0x000000010bf2d043 ginfo`window_new_screen_size(width=0, height=0) + 323 at wi

 139 windows->height = 0;

 140 free (windows->line_starts);

 -> 141 free (windows->log_line_no);

 142 windows->line_starts = NULL;

 143 windows->line_count = 0;

 144 break;

When windows->line_starts is NULL, then the value assigned to

windows->log_line_no seems to not be allocated, just assigned a reference.

Attempting to free a non-allocated pointer is a bad idea, so it looks like there is

some more NULL checks that must be added.

####Bug #2

Original:

Patch:

(lldb) p *windows

(WINDOW) $128 = {

 next = 0x0000000000000000

 prev = 0x0000000000000000

 width = 105

 height = 0

 first_row = 0

 goal_column = 18446744073709551615

 keymap = 0x00007f8355006a00

 node = 0x00007f8353d00370

 pagetop = 22

 point = 33214047251857408

 line_map = {

 node = 0x00007f8353d00370

 nline = 0

 size = 80

 used = 0

 map = 0x00007f8353d058d0

 }

 modeline = 0x00007f8353e00410 "-----Info: (*manpages*)whois, 144 lines --15%--------

 line_starts = 0x0000000000000000

 line_count = 0

 log_line_no = 0x00007f8355800600

 flags = 5

}

windows->height = 0;

free (windows->line_starts);

free (windows->log_line_no);

windows->line_starts = NULL;

windows->line_count = 0;

break;

This code fixes two bugs that are basically the same root cause. The crash is

caused when windows->line_starts is NULL, the windows->log_line_no

isn't allocated memory (just a reference to zero) and will cause a crash when

freed.

Running it again with these patches causes yet another set of crashes:

Crash #1:

Crash #2:

This is the result of a fall-through case in entry->inverse . The struct

DISPLAY_LINE is defined as:

windows->height = 0;

if (windows->line_starts) {

 free (windows->line_starts);

 windows->line_starts = NULL;

 free (windows->log_line_no);

}

windows->log_line_no = NULL;

windows->line_count = 0;

break;

* thread #1: tid = 0x98265e, 0x0000000104338d91 ginfo`display_node_text(closure=<unavail

frame #0: 0x0000000104338d91 ginfo`display_node_text(closure=<unavailable>, pline_index=

 135 the line from the screen first. Why, I don't know.

 136 (But don't do this if we have no visible entries, as can

 137 happen if the window is shrunk very small.) */

 -> 138 if (entry->inverse

 139 /* Need to erase the line if it has escape sequences. */

 140 || (raw_escapes_p && mbschr (entry->text, '\033') != 0))

 141 {

* thread #1: tid = 0x982d2a, 0x0000000106974dd1 ginfo`display_node_text(closure=<unavail

frame #0: 0x0000000106974dd1 ginfo`display_node_text(closure=<unavailable>, pline_index=

 142 terminal_goto_xy (0, win->first_row + pline_index);

 143 terminal_clear_to_eol ();

 144 entry->inverse = 0;

 -> 145 entry->text[0] = '\0';

 146 entry->textlen = 0;

 147 }

However the member inverse is only ever set to 0 or 1 , never any other

number. The check on line 138 in the first crash is a bad access of

entry->inverse , and the second crash is a result of the first conditional

expression of that if statement passing due to the value of entry->inverse

being something other than zero. An explicit check against the value of

inverse will mitigate these crashes.

####Bug #3

Original:

Patch:

With the fourth bug patched it is directly onto the next crasher:

typedef struct {

 char *text; /* Text of the line as it appears. */

 int textlen; /* Printable Length of TEXT. */

 int inverse; /* Non-zero means this line is inverse. */

} DISPLAY_LINE;

/* If the screen line is inversed, then we have to clear

 the line from the screen first. Why, I don't know.

 (But don't do this if we have no visible entries, as can

 happen if the window is shrunk very small.) */

 if (entry->inverse

 /* Need to erase the line if it has escape sequences. */

 || (raw_escapes_p && mbschr (entry->text, '\033') != 0))

{

/* If the screen line is inversed, then we have to clear

 the line from the screen first. Why, I don't know.

 (But don't do this if we have no visible entries, as can

 happen if the window is shrunk very small.) */

 if (entry->inverse == 1

 /* Need to erase the line if it has escape sequences. */

 || (raw_escapes_p && mbschr (entry->text, '\033') != 0))

{

Now back to the original bug with using strchr to check for escape

characters in the text. This time instead of a NULL dereference the cstring

pointer being handed to it is an invalid memory address. Walking back through

the frames reveals some more info:

* thread #1: tid = 0x98caa1, 0x00007fff8e5caa46 libsystem_platform.dylib`_platform_strch

frame #0: 0x00007fff8e5caa46 libsystem_platform.dylib`_platform_strchr + 38

libsystem_platform.dylib`_platform_strchr + 38:

 -> 0x7fff8e5caa46: movdqa (%rdi), %xmm2

 0x7fff8e5caa4a: pcmpeqb %xmm2, %xmm1

 0x7fff8e5caa4e: pcmpeqb %xmm0, %xmm2

 0x7fff8e5caa52: por %xmm1, %xmm2

(lldb) bt

* thread #1: tid = 0x98caa1, 0x00007fff8e5caa46 libsystem_platform.dylib`_platform_strch

 * frame #0: 0x00007fff8e5caa46 libsystem_platform.dylib`_platform_strchr + 38

 frame #1: 0x000000010a6818d8 ginfo`mbschr(string=0x20612d2020202020, c=<unavailabl

 frame #2: 0x000000010a662db2 ginfo`display_node_text(closure=<unavailable>, pline_

 frame #3: 0x000000010a67f75b ginfo`process_node_text(win=0x00007f8eda403750, start

 frame #4: 0x000000010a662c44 ginfo`display_update_one_window(win=0x00007f8eda40375

 frame #5: 0x000000010a662b75 ginfo`display_update_display(window=<unavailable>) +

 frame #6: 0x000000010a67bba3 ginfo`reset_info_window_sizes [inlined] redisplay_aft

 frame #7: 0x000000010a67bb73 ginfo`reset_info_window_sizes + 83 at signals.c:175

 frame #8: 0x000000010a67ba12 ginfo`info_signal_proc(sig=<unavailable>) + 258 at si

 frame #9: 0x00007fff8e5ca5aa libsystem_platform.dylib`_sigtramp + 26

 frame #10: 0x00007fff8aeed9f1 libsystem_kernel.dylib`read + 9

 frame #11: 0x00007fff784e9420 libsystem_c.dylib`__strerror_ebuf + 16

 frame #12: 0x000000010a67397c ginfo`info_read_and_dispatch + 204 at session.c:215

 frame #13: 0x000000010a673857 ginfo`display_startup_message_and_start [inlined] in

 frame #14: 0x000000010a673838 ginfo`display_startup_message_and_start + 40 at sess

 frame #15: 0x000000010a66b53e ginfo`single_file(argc=<unavailable>, filename=<unav

 frame #16: 0x000000010a66aec5 ginfo`main(argc=<unavailable>, argv=0x00007fff5559eb

 frame #17: 0x00007fff8e8c15fd libdyld.dylib`start + 1

Inside of frame 2, the variable entry is defined as:

In the case of this crash, win->first_row == 0 and pline_index == 8 .

This would be the contents of closure in frame 2, corresponding to the

struct:

The contents of the member display is an array of pointers to instances of

DISPLAY_LINE :

(lldb) frame select 1

frame #1: 0x000000010a6818d8 ginfo`mbschr(string=0x20612d2020202020, c=<unavailable>) +

 48 return NULL;

 49 }

 50 else

 -> 51 return strchr (string, c);

 52 }

(lldb) frame select 2

frame #2: 0x000000010a662db2 ginfo`display_node_text(closure=<unavailable>, pline_index=

 137 happen if the window is shrunk very small.) */

 138 if (entry->inverse == 1

 139 /* Need to erase the line if it has escape sequences. */

 -> 140 || (raw_escapes_p && mbschr (entry->text, '\033') != 0))

 141 {

 142 terminal_goto_xy (0, win->first_row + pline_index);

 143 terminal_clear_to_eol ();

(lldb) frame select 3

frame #3: 0x000000010a67f75b ginfo`process_node_text(win=0x00007f8eda403750, start=<unav

 1645

 -> 1646 rc = fun (closure, line_index, logline_index,

 1647 mbi_cur_ptr (iter) - in_index,

 1648 printed_line, pl_index, pl_count);

 1649

struct display_node_closure *dn = closure;

WINDOW *win = dn->win;

DISPLAY_LINE **display = dn->display;

DISPLAY_LINE *entry = display[win->first_row + pline_index];

(struct display_node_closure *)closure =>

struct display_node_closure {

 WINDOW *win;

 DISPLAY_LINE **display;

};

When looking at these contents in memory:

typedef struct {

 char *text; /* Text of the line as it appears. */

 int textlen; /* Printable Length of TEXT. */

 int inverse; /* Non-zero means this line is inverse. */

} DISPLAY_LINE;

[index] (DISPLAY_LINE **)

[0] 40 00 E0 4A AD 7F 00 00 => 0x00007FAD4AE00040

[1] C0 00 E0 4A AD 7F 00 00 => 0x00007FAD4AE000C0

[2] 40 01 E0 4A AD 7F 00 00 => 0x00007FAD4AE00140

[3] C0 01 E0 4A AD 7F 00 00 => 0x00007FAD4AE001C0

[4] 40 02 E0 4A AD 7F 00 00 => 0x00007FAD4AE00240

[5] C0 02 E0 4A AD 7F 00 00 => 0x00007FAD4AE002C0

[6] 40 03 E0 4A AD 7F 00 00 => 0x00007FAD4AE00340

[7] 00 00 00 00 00 00 00 00 => 0x0, signifying the end of the array

Index 0: (Offset 0x00007FAD4AE00040)

50 00 E0 4A AD 7F 00 00 => 0x00007FAD4AE00050 (offset of the text member)

4D 00 00 00 => textlen == 77

00 00 00 00 => inverse == 0

20 20 20 20 20 20 20 20 20 20 20 20 20 4E 4F 54 45 21 20 20 54 68 65 20 72 65 67 69 73 7

 => text == " NOTE! The registration of these domains is now done by a n

Index 1: (Offset 0x00007FAD4AE000C0)

D0 00 E0 4A AD 7F 00 00 => 0x00007FAD4AE000D0 (offset of the text member)

4D 00 00 00 => textlen == 77

00 00 00 00 => inverse == 0

20 20 20 20 20 20 20 20 20 20 20 20 20 6F 66 20 69 6E 64 65 70 65 6E 64 65 6E 74 20 61 6

 => text == " of independent and competing registrars. This database hol

Index 2: (Offset 0x00007FAD4AE00140)

50 01 E0 4A AD 7F 00 00 => 0x00007FAD4AE00150 (offset of the text member)

4A 00 00 00 => textlen == 74

00 00 00 00 => inverse == 0

20 20 20 20 20 20 20 20 20 20 20 20 20 69 6E 66 6F 72 6D 61 74 69 6F 6E 20 6F 6E 20 64 6

 => text == " information on domains registered by organizations other th

Index 3: (Offset 0x00007FAD4AE001C0)

D0 01 E0 4A AD 7F 00 00 => 0x00007FAD4AE001D0 (offset of the text member)

4B 00 00 00 => textlen == 75

00 00 00 00 => inverse == 0

20 20 20 20 20 20 20 20 20 20 20 20 20 4E 65 74 77 6F 72 6B 20 53 6F 6C 75 74 69 6F 6E 7

 => text == " Network Solutions, Inc. Also, note that the InterNIC datab

Index 4: (Offset 0x00007FAD4AE00240)

50 02 E0 4A AD 7F 00 00 => 0x00007FAD4AE00250 (offset of the text member)

4C 00 00 00 => textlen == 76

00 00 00 00 => inverse == 0

20 20 20 20 20 20 20 20 20 20 20 20 20 28 77 68 6F 69 73 2E 69 6E 74 65 72 6E 69 63 2E 6

 => text == " (whois.internic.net) is no longer handled by Network Soluti

Index 5: (Offset 0x00007FAD4AE002C0)

D0 02 E0 4A AD 7F 00 00 => 0x00007FAD4AE002D0 (offset of the text member)

3D 00 00 00 => textlen == 61

00 00 00 00 => inverse == 0

20 20 20 20 20 20 20 20 20 20 20 20 20 49 6E 63 2E 20 20 46 6F 72 20 64 65 74 61 69 6C 7

Referencing how we access the current entry:

This puts the DISPLAY_LINE* entry beyond the bounds of the array and

instead, accessing the pointer to the first string entry contents

0x00007FAD4AE00050 . This results in a valid pointer but of the wrong type,

resulting in a bad memory access when it performs strchr against the first 8

bytes the string rather than accessing the 8 bytes that would be the pointer to

the string contents.

####Bug #4

Original:

Patch:

 => text == " Inc. For details, see http://www.internic.net/."

Index 6: (Offset 0x00007FAD4AE00340)

50 03 E0 4A AD 7F 00 00 => 0x00007FAD4AE00350 (offset of the text member)

00 00 00 00 => textlen == 0

00 00 00 00 => inverse == 0

00

 => text == "" (empty string)

DISPLAY_LINE *entry = display[win->first_row + pline_index]; // => display[8];

struct display_node_closure *dn = closure;

WINDOW *win = dn->win;

DISPLAY_LINE **display = dn->display;

DISPLAY_LINE *entry = display[win->first_row + pline_index];

struct display_node_closure *dn = closure;

WINDOW *win = dn->win;

DISPLAY_LINE **display = dn->display;

int index_count = 0;

while (display[index_count] != NULL) {

 index_count++;

}

int entry_index = win->first_row + pline_index;

if (entry_index > index_count) {

 return 0;

}

DISPLAY_LINE *entry = display[entry_index];

This patch is a serious hack, but lacking any way to reliably check the number of

indexed entries in the array it is the only thing I can come up with to ensure the

valid indexing.

Repeating the steps turns up another crash:

This is another invalid indexing bug.

####Bug #5

Original:

Patch:

* thread #1: tid = 0x99ec07, 0x0000000108031c62 ginfo`display_update_one_window(win=0x00

frame #0: 0x0000000108031c62 ginfo`display_update_one_window(win=0x00007faa20d03ce0) + 2

 261 DISPLAY_LINE *entry = display[win->first_row + line_index];

 262

 263 /* If this line has text on it then make it go away. */

 -> 264 if (entry && entry->textlen)

 265 {

 266 entry->textlen = 0;

 267 entry->text[0] = '\0';

for (; line_index < win->height; line_index++)

{

 DISPLAY_LINE *entry = display[win->first_row + line_index];

 /* If this line has text on it then make it go away. */

 if (entry && entry->textlen)

 {

 entry->textlen = 0;

 entry->text[0] = '\0';

 terminal_goto_xy (0, win->first_row + line_index);

 terminal_clear_to_eol ();

 }

}

In this case the value stored in win->height could be -1 . This results in a

very large unsigned number, causing invalid indexes and bad pointer

dereferences to take place. Implementing the same hacked solution as before

results in no more invalid indexing.

Another Crash:

Again another NULL dereference to fix:

####Bug #6

Original:

for (; line_index < win->height; line_index++)

{

 int index_count = 0;

 while (display[index_count] != NULL) {

 index_count++;

 }

 int entry_index = win->first_row + line_index;

 if (entry_index > index_count) {

 break;

 }

 DISPLAY_LINE *entry = display[entry_index];

 /* If this line has text on it then make it go away. */

 if (entry && entry->textlen)

 {

 entry->textlen = 0;

 entry->text[0] = '\0';

 terminal_goto_xy (0, win->first_row + line_index);

 terminal_clear_to_eol ();

 }

}

* thread #1: tid = 0x9a72ee, 0x000000010bfbbca7 ginfo`display_update_one_window(win=0x00

frame #0: 0x000000010bfbbca7 ginfo`display_update_one_window(win=0x00007fe43a5036e0) + 3

 289

 290 /* This display line must both be in inverse, and have the same

 291 contents. */

 -> 292 if ((!display[line_index]->inverse) ||

 293 (strcmp (display[line_index]->text, win->modeline) != 0))

 294 {

 295 terminal_goto_xy (0, line_index);

if ((!display[line_index]->inverse) ||

 (strcmp (display[line_index]->text, win->modeline) != 0))

Patch:

These invalid indexing bugs are caused by the window height using an incorrect

number. There are a lot of patches to find the cause of this.

####Bug #7

Original:

Patch:

Original:

Patch:

Original:

Patch:

Original:

if (display[line_index] != NULL && (display[line_index]->inverse == 0 ||

 (strcmp (display[line_index]->text, win->modeline) != 0)))

next->height--;

if (next->height != 0) {

 next->height--;

}

prev->height--;

if (prev->height != 0) {

 prev->height--;

}

active_window->height = the_screen->height - 1 - the_echo_area->height;

active_window->height = the_screen->height - (the_screen->height > 2 ? 1 - the_echo_area

 if (win->height == delta_each)

 win->height -= (1 + the_echo_area->height);

Patch:

Original:

Patch:

For final thoughts on this, the comment just above the past line of patched code

reads:

At this point there is still a lingering a crash or two that I have yet to be able to

trigger while info is attached in lldb. However now the mere act if resizing the

window does not trigger a fatal crash immediately.

###Conclusion:

I don't feel like I have truly fixed anything from this. I have exposed a number of

bugs related to poor string handling and made a poor attempt at holding back a

tide of undefined behavior due to unindexed arrays. These bug fixes may

actually cause more harm by being introduced than was caused by the original

crashing bug. What started as a simple endeavor turned into an exercise in yak

shaving and proof of murphy's law.

What made this all the more difficult wasn't the code syntax/formatting, or

language, or even the age of the code itself. Lack of any architectural

understanding was made this extremely difficult to fix. Most of these errors

dealt with storing a negative value as the window height and resulting

undefined behavior from that because it was using a unsigned integer to store a

if (win->height == delta_each && win->height > 2)

 win->height -= (1 + the_echo_area->height);

if (win->height <= 0 || win->width <= 0 || display_inhibited)

 return;

if (win->height <= 0 || win->height > INT32_MAX || win->width <= 0 || display_inhibited)

 return;

/* If the window has no height, or display is inhibited, quit now.

Strictly speaking, it should only be necessary to test if the

values are equal to zero, since window_new_screen_size should

ensure that the window height/width never becomes negative, but

since historically this has often been the culprit for crashes, do

our best to be doubly safe. */

signed integer value. The window height value is used to compute the number

of stored lines of text to display, which might not be accurate to the actual

number of indexed values in the array. No bounds-checking on this results in

more problems due to accessing incorrect memory addresses and crashes.

Simply put, many of these issues could have been avoided entirely by

implementing safe coding practices in the first place.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Fixing Old Bugs

