
Recently I was asked by a friend to give them some advice on how to start doing

iOS development. This isn't a question I get often, due to my position in the iOS

community I am often asked questions about technical aspects of development,

but not how to get started with development. I thought this would be a good

time to look back on how I got into development and iOS development

specifically. This post will focus on the technologies provided and supported by

Apple.

Languages

Objective-C

Swift

Frameworks

Cocoa

Tools

Xcode

Reveal

Bluemix

Dependency Management

Manual Management

CocoaPods

Carthage

Swift Package Manager

Objective-C is the most popular language for writing iOS software. All of the

frameworks that Apple provides to use on iOS are written in Objective-C (or C).

This is language that has the most support for development on Apple's

Introduction to iOS Development

Table of Contents

•

◦

◦

•

◦

•

◦

◦

◦

•

◦

◦

◦

◦

Languages

Objective-C

platforms. Apple provides a lot of good resources and guides and learning the

language and development.

Programming with Objective-C - This is a good place to start if you are not

familiar with Objective-C at all and want to learn the basic language

concepts and constructs.

Object-Oriented Programming with Objective-C - Objective-C is a super-set

of the C language that adopts a lot of the behaviors of the Smalltalk

programming language. This guide details how to follow object-oriented

design when working with Objective-C.

Adopting Modern Objective-C - Objective-C has been around for over 30

years, for the most part many of the language concepts have remained the

same but in the last few years there have been a number of language

enhancements that have been made by Apple. This guide is for getting up

to speed with these changes and how to take advanage of them effectively.

Concepts in Objective-C Programming - The primary framework that you will

be working with on the iOS platform is called "Cocoa". This guide introduces

the common programming concepts used by the Cocoa frameworks (which

will be covered in more detail later in this post).

In addition to these resources, there are a number of really good books that

have been written on getting started with using Objective-C:

Objective-C Programming: Big Nerd Ranch Guide

Learn Objective-C on the Mac

Learning Cocoa with Objective-C

↑ Parent

Apple created a new programming language a few years ago, called Swift. This

is designed to be a safer and faster language to use for development. Please

check out www.swift.org to get the latest information about it.

The Swift Programming Language ~ iBooks Version ~ (2.2) ePub Version -

This is the official language document to learn and understand how to use

the Swift programming language. This language is relatively new and is still

evolving.

Using Swift with Cocoa and Objective-C - Introduces how to use Swift with

Intro to iOS Development in Swift - This is a guide specifically for the

starting development on iOS with Swift.

Swift Programming: Big Nerd Ranch Guide

↑ Parent

•

•

•

•

•

•

•

Swift

•

•

•

•

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/OOP_ObjC/Introduction/Introduction.html
https://developer.apple.com/library/ios/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/AdoptingModernObjective-C.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Introduction/Introduction.html
https://www.bignerdranch.com/we-write/objective-c-programming/
http://www.apress.com/9781430241881
http://shop.oreilly.com/product/0636920033387.do
https://swift.org
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/index.html
https://itunes.apple.com/us/book/the-swift-programming-language/id881256329?mt=11
https://swift.org/documentation/TheSwiftProgrammingLanguage(Swift2.2).epub
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/index.html
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/index.html
https://www.bignerdranch.com/we-write/swift-programming/

↑ Table of Contents

The Objective-C language doesn't provide terribly much to work with on its own.

You have access to the C and C++ standard libraries. Swift has a more

extensive standard library, but it is still not enough to build user applications

with. For the majority of things in iOS development we rely on a set of

frameworks provided by Apple.

The collection of Objective-C-based frameworks are referred to as "Cocoa".

These provide almost any functionality that you would wish to have in an

application. There are over 80 frameworks that are part of this umbrella, that

cover everything from low level computing, to audio and video, to basic UI

creation and flow. Apple has many how-to guides and API reference pages on

their documentation site here.

Cocoa Programming for Mac OS X

iOS Programming: Big Nerd Ranch Guide

iOS Autolayout Demystified

iOS 9 SDK Development

Core iOS Developer's Cookbook

↑ Parent

↑ Table of Contents

Xcode is the IDE (Integrated Development Environment) that Apple creates and

uses for iOS and OS X development. This is a fairly complex tool, however I have

written some extensive documentation for getting up to speed and

understanding what you are doing with using it to build applications:

Managing Xcode

Using Xcode Targets

The Xcode Build System

Guide to xcconfig files

Frameworks

Cocoa

•

•

•

•

•

Tools

Xcode

•

•

•

•

https://developer.apple.com/library/ios/navigation/#section=Frameworks
https://www.bignerdranch.com/we-write/cocoa-programming/
https://www.bignerdranch.com/we-write/ios-programming/
http://www.informit.com/store/ios-auto-layout-demystified-9780133440652
https://pragprog.com/book/adios3/ios-9-sdk-development
http://www.informit.com/store/core-ios-developers-cookbook-9780321948106
https://pewpewthespells.com/blog/managing_xcode.html
https://pewpewthespells.com/blog/using_xcode_targets.html
https://pewpewthespells.com/blog/xcode_build_system.html
https://pewpewthespells.com/blog/xcconfig_guide.html

Xcode Build Setting Reference

Apple has recently updated their guide to Instruments, which is a tool for

profiling and finding flaws in software. I highly recommend reading it.

↑ Parent

Reveal is an user interface introspection tool. This has been invaluable for me in

debugging problems with user interfaces in apps. You can download the trial to

this app here.

↑ Parent

Bluemix is the name of the website that hosts the IBM Swift Sandbox. This is a

web-based REPL for experimenting with programming in Swift. This behaves

similiarly to Xcode Playgrounds.

↑ Parent

↑ Table of Contents

At some point in a project's life, you will need to start using a tool to manage

third party code. For iOS and OS X development there are a couple of

approaches to doing this.

The manual management approach to dependencies is completely hands-on. If

you are using git for version control, you may be using submodules as a

means of integrating additional code to your repository. Taking a manual

approach to dependency management carries a burden of knowledge of the

Xcode build system and integration steps to include it into your project as well

as conflict resolution and versioning of the third party code.

↑ Parent

•

Reveal

Bluemix

Dependency Management

Manual Management

https://pewpewthespells.com/blog/buildsettings.html
https://developer.apple.com/library/ios/recipes/instruments_help-collection/index.html#//apple_ref/doc/uid/TP40010994
http://revealapp.com
https://swiftlang.ng.bluemix.net/#/repl

CocoaPods is the most popular method of dependency integraion on OS X and

iOS. In my experience, this has been the best and easiest way for me to

integrate dependencies into a project. You can check out a full explanation of

what it can do for you here.

↑ Parent

Carthage is another dependency manager, that could be described as halfway

between manual management and the automated management that CocoaPods

provides. It relies on a much more manual approach to integration and

configuration.

↑ Parent

The Swift Package Manager ("spm" for short) is a tool specifically for

management of Swift libraries. It is currently in beta and will be released with

Swift 3, which is scheduled for the end of 2016.

↑ Parent

↑ Table of Contents

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

CocoaPods

Carthage

Swift Package Manager

https://cocoapods.org
https://cocoapods.org/about
https://github.com/Carthage/Carthage
https://swift.org/package-manager/
https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Introduction to iOS Development
	Table of Contents
	Languages
	Objective-C
	Swift

	Frameworks
	Cocoa

	Tools
	Xcode
	Reveal
	Bluemix

	Dependency Management
	Manual Management
	CocoaPods
	Carthage
	Swift Package Manager

