
One of my active open source projects is called "AOSD" (Apple Open Source

Downloader). It is a utility that allows for easily downloading packages that

Apple has released on their open source site. I wrote this because I am very

interested in the code that Apple releases and have worked with Apple to help

keep the releases on that site up-to-date. Last month I rewrote AOSD from

scratch to be more than just a hacked together Python script. I wanted to be

able to have the tool stand alone and be able to get access to new source

updates without needing to rebuild it. As part of this I wrote an interactive

command console in it to allow for easier access to the source packages and

enable some nice features like being able to tab-complete package names and

release/build numbers. This all came together very well, but I was left with a

remaining issue of the output of suggested completions becoming sorted. This

blog post explains the issues and work-around I needed to use for the

implementation of the readline module on OS X.

Python has a module called readline which supports completion and read/write

of history files for the Python interpreter. The most significant thing about this

module is that the implementation of it differs based on the host OS.

Querying readline.__doc__ on Ubuntu 14.0.4.3:

Querying readline.__doc__ on OS X 10.10.5:

OS X, Python, and the readline

module

Intro

Background

$ python

Python 2.7.6 (default, Jun 22 2015, 17:58:13)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import readline

>>> print(readline.__doc__)

Importing this module enables command line editing using GNU readline.

https://github.com/samdmarshall/AOS-Downloader
https://github.com/samdmarshall/AOS-Downloader
https://opensource.apple.com

As you can see, on OS X the implementation of readline is handled by libedit

instead of the standard GNU implementation. This is important to make note of

and is mentioned specifically in the Python documentation that the two

implementations differ in how they are used.

The following is an example of how to create a custom console application in

python:

If you were to save this to a file and run it via python mycmd.py you would

get a prompt that looks like this:

From here you can enter the command bleep and it will print out a new line:

Something that you will notice is that if you hit the tab key, it will insert a tab

character. While this may be desired behavior when working with text, a

command console should map the tab key to assist the user with completing

whatever command they are currently typing. This is where the readline module

comes in. Modifying the code to add the module and add support for tab

completion:

$ python

Python 2.7.10 (default, Jul 14 2015, 19:46:27)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import readline

>>> print(readline.__doc__)

Importing this module enables command line editing using libedit readline.

from cmd import Cmd

class my_cmd(Cmd,object):

 def do_bleep(self, s):

 print("bleep!")

a = my_cmd()

a.cmdloop()

$ python blogcmd.py

(Cmd)

(Cmd) bleep

bleep!

(Cmd)

https://docs.python.org/2/library/readline.html

From here running the code again, you will notice one of two things happen

when you hit the "tab" key twice:

the console suggested two options, "bleep" and "help"

the console inserted the tab character

If you experienced the first option, then Python has imported the GNU readline

module. However if you experienced the latter of the two, then you are most

likely running OS X or have a broken installation of Python.

To get tab-completion to work using readline on OS X you need to issue a

different command to the module:

Now when running the code again you should be able to hit the tab key twice on

the command console and see output like this:

This is due to the differing implementation of readline on OS X. If you want to

make your Python code take advantage of tab-completion regardless of platform

it is being run on you are going to have to implement the following after

importing the module:

from cmd import Cmd

import readline

readline.parse_and_bind("tab: complete")

class my_cmd(Cmd,object):

 def do_bleep(self, s):

 print("bleep!")

a = my_cmd()

a.cmdloop()

1.

2.

from cmd import Cmd

import readline

readline.parse_and_bind("bind ^I rl_complete")

class my_cmd(Cmd,object):

 def do_bleep(self, s):

 print("bleep!")

a = my_cmd()

a.cmdloop()

$ python blogcmd.py

(Cmd) <tab><tab>

bleep help

(Cmd)

This is, unfortunately, the official recommendation of how to check for and

handle the different implementations of the readline module in Python.

Armed with this knowledge, you can easily implement your own auto-

completion into the command console:

Running this will result in the following output:

Now you can see here a new method was added to the my_cmd class, part of

the functionality provided by the cmd.Cmd class object is that it allows for

completion of available commands as well as the completion for arguments for

those commands. You will notice that in the code this was implemented to

return the array ['z', 'a'] and in the output on the command line we see it

in reverse order a z . This is because of the default implementation of readline

will sort the output for better readability by us humans.

For most cases this is desired behavior, however when trying to supply

completion options for build numbers this can become a problem. Very few build

versioning numbers can happily be sorted and preserve the intended ordering

of the items.

For example, starting with an array of numbers:

if 'libedit' in readline.__doc__:

 readline.parse_and_bind("bind ^I rl_complete")

else:

 readline.parse_and_bind("tab: complete")

from cmd import Cmd

import readline

readline.parse_and_bind("bind ^I rl_complete")

class my_cmd(Cmd,object):

 def do_bleep(self, s):

 print("bleep!")

 def complete_bleep(self, text, line, begidx, endidx):

 return ['z', 'a']

a = my_cmd()

a.cmdloop()

$ python blogcmd.py

(Cmd) <tab><tab>

bleep help

(Cmd) ble<tab>

(Cmd) bleep<space><tab><tab>

a z

['10.0', '10.1', '10.2', '10.3', '10.4', '10.5', '10.6', '10.7', '10.8', '10.9', '10.10'

The desired output for this should preserve this exact order (or be inverted,

depending on how you want to show chronological releases). However running

this through a sorting algorithm will return the ordering as:

This was the problem I was running into, where I was returning an array of

elements in the desired order but they were getting printed to screen in a

different order.

The readline module has an API that was introduced in version 2.6 that allows

you to assign your own function to perform the action of displaying the

completion matches from your command console.

readline.set_completion_display_matches_hook([function])

Set or remove the completion display function. If function is specified, it will

be used as the new completion display function; if omitted or None , any

completion display function already installed is removed. The completion

display function is called as

function(substitution, [matches], longest_match_length) once

each time matches need to be displayed.

By using this API, you are able to modify how the readline module will display

the output of the completion. So we can modify the code to take advantage of

this:

['10.0', '10.1', '10.10', '10.2', '10.3', '10.4', '10.5', '10.6', '10.7', '10.8', '10.9'

Modifying readline's completion display

from cmd import Cmd

import readline

def match_display_hook(substitution, matches, longest_match_length):

 for match in matches:

 print match

 print readline.get_line_buffer(),

 readline.redisplay()

readline.parse_and_bind("bind ^I rl_complete")

readline.set_completion_display_matches_hook(match_display_hook)

class my_cmd(Cmd,object):

 def do_bleep(self, s):

 print "bleep!"

 def complete_bleep(self, text, line, begidx, endidx):

 return ['z', 'a']

a = my_cmd()

a.cmdloop()

https://docs.python.org/2/library/readline.html#readline.set_completion_display_matches_hook

Before we test this implementation, there are a couple of things that aren't

talked about in the documentation.

The way the cmd.Cmd class works is that it will override the default completion

handler from readline to use its own completion handler. This is how it

dynamically generates the list of available commands based on the names of

the method calls that get implemented on the subclass. It will find any methods

that start with do_ and interpret those as actions, any methods starting with

complete_ with be used as argument completion for the respective

command. Each command can have its own completion handler for the

arguments specific to that command.

This is what the completion handler on cmd.Cmd looks like:

If you look at the comments I've added to this snippet of code, you see that the

value that is getting returned from this function is the array of results that get

Implementing a completion handler

def complete(self, text, state):

 """Return the next possible completion for 'text'.

 If a command has not been entered, then complete against command list.

 Otherwise try to call complete_<command> to get list of completions.

 """

 if state == 0:

 import readline

 origline = readline.get_line_buffer()

 line = origline.lstrip()

 stripped = len(origline) - len(line)

 begidx = readline.get_begidx() - stripped

 endidx = readline.get_endidx() - stripped

 if begidx>0:

 cmd, args, foo = self.parseline(line)

 if cmd == '':

 compfunc = self.completedefault # no command in

 else:

 try:

 compfunc = getattr(self, 'complete_' + cmd) # attempting to

 except AttributeError:

 compfunc = self.completedefault # fall back to d

 else:

 compfunc = self.completenames # use the functi

 self.completion_matches = compfunc(text, line, begidx, endidx) # call the funct

 try:

 return self.completion_matches[state] # return array o

 except IndexError:

 return None

returned from the complete_ function we have implemented in our my_cmd

object. This verifies that the output we will see on the display should match the

ordering of that of the array we return. However, testing out the implementation

yields the same result on OS X:

This is because our custom display hook is not being called at all. You can

validate this by adding some print debugging statements of your own to the

def match_display_hook(substitution, matches, longest_match_length): that was implemented in the cod

After eliminating our code, and the other Python code we are using, the only

thing left is the code of the readline itself. To locate the source of the module,

you can open an Python console and query the import:

From here we can see that it is being loaded from the system installation of

Python 2.7 and running file on the path provided shows us that it is a

dynamic library:

This module is compiled C code, rather than Python, which makes it a little more

challenging to debug. Python can load dynamic libraries written in C as modules

(you can learn more about it here). Luckily Apple releases the Python

implementation they use as part of their open source package release, so we

can examine how this particular module is written without having to reverse

engineer it from the binary.

$ python blogcmd.py

(Cmd) <tab><tab>

bleep help

(Cmd) ble<tab>

(Cmd) bleep<space><tab><tab>

a z

The sorting was coming from within readline

$ python

Python 2.7.10 (default, Jul 14 2015, 19:46:27)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import readline

>>> print(readline)

<module 'readline' from '/System/Library/Frameworks/Python.framework/Versions/2.7/lib/py

$ file /System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-dynloa

/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-dynload/readl

/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-dynload/readl

/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-dynload/readl

https://docs.python.org/2/extending/extending.html

The source shows us that if Apple is compiling this module it is supposed to be

initialized taking a slightly different path than if it was compiled otherwise. The

doc string for the module is changed to mention the usage of libedit instead of

GNU. Following the code, it calls into setup_readline() :

/* Initialize the module */

PyDoc_STRVAR(doc_module,

"Importing this module enables command line editing using GNU readline.");

#ifdef __APPLE__

PyDoc_STRVAR(doc_module_le,

"Importing this module enables command line editing using libedit readline.");

#endif /* __APPLE__ */

PyMODINIT_FUNC

initreadline(void)

{

 PyObject *m;

#ifdef __APPLE__

 if (strncmp(rl_library_version, libedit_version_tag, strlen(libedit_version_tag)) ==

 using_libedit_emulation = 1;

 }

 if (using_libedit_emulation)

 m = Py_InitModule4("readline", readline_methods, doc_module_le,

 (PyObject *)NULL, PYTHON_API_VERSION);

 else

#endif /* __APPLE__ */

 m = Py_InitModule4("readline", readline_methods, doc_module,

 (PyObject *)NULL, PYTHON_API_VERSION);

 if (m == NULL)

 return;

 ...

 setup_readline();

 ...

}

As part of the initial setup, there is a function set to be called when readline

attempts to complete any text:

The final line of this function,

return completion_matches(text, *on_completion); contains a macro

when compiled for Apple systems.

/* Helper to initialize GNU readline properly. */

static void

setup_readline(void)

{

 ...

 /* Set our completion function */

 rl_attempted_completion_function = flex_complete;

 ...

}

/* A more flexible constructor that saves the "begidx" and "endidx"

 * before calling the normal completer */

static char **

flex_complete(const char *text, int start, int end)

{

#ifdef HAVE_RL_COMPLETION_APPEND_CHARACTER

 rl_completion_append_character ='\0';

#endif

#ifdef HAVE_RL_COMPLETION_SUPPRESS_APPEND

 rl_completion_suppress_append = 0;

#endif

 Py_XDECREF(begidx);

 Py_XDECREF(endidx);

 begidx = PyInt_FromLong((long) start);

 endidx = PyInt_FromLong((long) end);

 return completion_matches(text, *on_completion);

}

#ifdef HAVE_RL_COMPLETION_MATCHES

 #define completion_matches(x, y) rl_completion_matches((x), ((rl_compentry_func_t *)

#else

 #if defined(_RL_FUNCTION_TYPEDEF)

 extern char **completion_matches(char *, rl_compentry_func_t *);

 #else

 #if !defined(__APPLE__)

 extern char **completion_matches(char *, CPFunction *);

 #endif

 #endif

#endif

The macro switches the call of completion_matches over to

rl_completion_matches . When this readline.c file is compiled into the

readline module it is linked against libedit, where it pulls much of the

functionality it uses. By checking the source code for libedit (also released as

part of Apple's open source packages), we can see the function that gets called

is the following:

char **

rl_completion_matches(const char *str, rl_compentry_func_t *fun)

{

 size_t len, max, i, j, min;

 char **list, *match, *a, *b;

 len = 1;

 max = 10;

 if ((list = el_malloc(max * sizeof(*list))) == NULL)

 return NULL;

 while ((match = (*fun)(str, (int)(len - 1))) != NULL) {

 list[len++] = match;

 if (len == max) {

 char **nl;

 max += 10;

 if ((nl = el_realloc(list, max * sizeof(*nl))) == NULL)

 goto out;

 list = nl;

 }

 }

 if (len == 1)

 goto out;

 list[len] = NULL;

 if (len == 2) {

 if ((list[0] = strdup(list[1])) == NULL)

 goto out;

 return list;

 }

 qsort(&list[1], len - 1, sizeof(*list), _completion_cmp); // we found the culprit!

 min = SIZE_T_MAX;

 for (i = 1, a = list[i]; i < len - 1; i++, a = b) {

 b = list[i + 1];

 for (j = 0; a[j] && a[j] == b[j]; j++)

 continue;

 if (min > j)

 min = j;

 }

 if (min == 0 && *str) {

 if ((list[0] = strdup(str)) == NULL)

 goto out;

 } else {

 if ((list[0] = el_malloc((min + 1) * sizeof(*list[0]))) == NULL)

 goto out;

 (void)memcpy(list[0], list[1], min);

 list[0][min] = '\0';

 }

 return list;

out:

This function is quite dense and the terse variable names make it difficult to see

what is going on. The function takes the text we have entered on the command

line so far as the first argument, then takes the completion handler we have

assigned in python as the second argument. The function will continue to call

the completion handler until it returns NULL , which signifies there are no more

completions available for the given string. It will then sort the completions via a

call to qsort with a callback that uses strcmp and then return the list.

So why is there an API that supposedly allows for modification of the display of

matched items?

This is the call that gets made when you assign a function to be the display

hook. This will successfully assign the new function to be the hook for displaying

the output, however the implementation of libedit never checks for this hook.

The GNU implementation of readline will perform a check to see if this hook is

assigned and then call the hook and return immediate afterwards. Since this

check is skipped in libedit, the call for displaying the matched output is sent

directly to fn_display_match_list :

 el_free(list);

 return NULL;

}

But what about set_completion_display_matches_hook ?

static PyObject *completion_display_matches_hook = NULL;

static PyObject *

set_completion_display_matches_hook(PyObject *self, PyObject *args)

{

 PyObject *result = set_hook("completion_display_matches_hook", &completion_display_m

 #ifdef HAVE_RL_COMPLETION_DISPLAY_MATCHES_HOOK

 /* We cannot set this hook globally, since it replaces the default completion di

 rl_completion_display_matches_hook = completion_display_matches_hook ?

 #if defined(_RL_FUNCTION_TYPEDEF)

 (rl_compdisp_func_t *)on_completion_display_matches_hook : 0;

 #else

 (VFunction *)on_completion_display_matches_hook : 0;

 #endif

 #endif

 return result;

}

This function parses through the list of matched items and will then format them

in columns to display on the terminal. Before displaying it will sort them using

qsort , but this time with a callback using strcasecmp instead of strcmp .

Due to how readline is implemented via libedit on OS X, you have only two

options:

install the GNU readline and use that over the system version

make the readline module use a different version of libedit

fn_display_match_list (EditLine *el, char **matches, size_t num, size_t width)

{

 size_t line, lines, col, cols, thisguy;

 int screenwidth = el->el_terminal.t_size.h;

 /* Ignore matches[0]. Avoid 1-based array logic below. */

 matches++;

 num--;

 /*

 * Find out how many entries can be put on one line; count

 * with one space between strings the same way it's printed.

 */

 cols = (size_t)screenwidth / (width + 1);

 if (cols == 0)

 cols = 1;

 /* how many lines of output, rounded up */

 lines = (num + cols - 1) / cols;

 /* Sort the items. */

 qsort(matches, num, sizeof(char *), _fn_qsort_string_compare); // another culprit!

 /*

 * On the ith line print elements i, i+lines, i+lines*2, etc.

 */

 for (line = 0; line < lines; line++) {

 for (col = 0; col < cols; col++) {

 thisguy = line + col * lines;

 if (thisguy >= num)

 break;

 (void)fprintf(el->el_outfile, "%s%-*s", col == 0 ? "" : " ", (int)width, mat

 }

 (void)fprintf(el->el_outfile, "\n");

 }

}

The Workaround

1.

2.

I would strongly recommend everyone follow the first option.

If that isn't a viable solution, you can create a work-around by shipping your

own implementation of the readline module that links to your own copy of

libedit.

First off you need to grab the source of libedit and make the modifications you

want. You can grab the source from Apple here or you can grab it already

modified to remove sorting here. As of this post the latest release of libedit is

40, and builds successfully from source. If you are building from Apple's source

and not the modified version you may also need to change the install name of

the library so dyld will not ignore loading it if libedit is already loaded in-process.

Once you have built libedit you will need to grab a copy of the existing

readline.so file and copy it to the same directory as your Python script file.

From here you will need to change the link path on readline.so from

/usr/lib/libedit.3.dylib to instead point to

@loader_path/libedit-unsorted.3.dylib . After doing this you can put the

libedit-unsorted.3.dylib (or whatever you named it, the link path and

name must match) next to the readline.so file.

Now your directory should look like this:

If you go back to the source code of your Python script, it should look like this:

When executed, you should see the following results:

How to override the system readline module

$ ls -1

blogcmd.py

libedit-unsorted.3.dylib

readline.so

from cmd import Cmd

import readline

readline.parse_and_bind("bind ^I rl_complete")

class my_cmd(Cmd,object):

 def do_bleep(self, s):

 print "bleep!"

 def complete_bleep(self, text, line, begidx, endidx):

 return ['z', 'a']

a = my_cmd()

a.cmdloop()

https://opensource.apple.com/tarballs/libedit/
https://github.com/samdmarshall/libedit

The completion display output now matches the order of the items returned

from the complete_bleep method call!

While this works, you may have some trouble trying to integrate this into a

module that can be installed and used. The way I have implemented a work-

around for this is to also ship your own implementation of the cmd.Cmd class. I

will then use the following check to selectively import the system cmd module

or the custom one.

I have a custom module that gets imported that only contains a slightly

modified copy of the system cmd.py file, readline.so , and

libedit.dylib (as modified above). The modifications I have applied to the

cmd.py file are as follows:

remove all instances of the line import readline that are spaced

throughout the file (there should be 3)

adding the following above the import string line

Now your completion display output should match the ordering that was

returned from your complete_ handler.

This post was a product of spending a the entire day trying to divine the cause

of the sorted output and why the defined APIs were not being called. I find it

hard to believe I am the first person that as come across the

$ python blogcmd.py

(Cmd) <tab><tab>

bleep help

(Cmd) bleep<space><tab><tab>

z a

(Cmd) bleep

Integrating this into a module

import sys

import platform

if sys.platform == 'darwin' and not 'ppc' in platform.machine(): # because libedit and r

 from .readline_unsorted.cmd import *

else:

 from cmd import Cmd

1.

2.

import readline

readline.parse_and_bind("bind ^I rl_complete")

Final Thoughts

set_completion_display_matches_hook API not working as intended

(maybe it is a regression), but it does seem that I am the first person to

document anything about it in relation to the libedit implementation of readline.

Hopefully this saves someone else the headache of trying to work this out for

themselves.

Thanks to Michael Lynn for helping me with this.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

https://twitter.com/mikeymikey
https://cash.me/$samanthademi
https://cash.me/$samanthademi

	OS X, Python, and the readline module
	Intro
	Background
	Modifying readline's completion display
	Implementing a completion handler
	The sorting was coming from within readline
	But what about set_completion_display_matches_hook ?
	The Workaround
	How to override the system readline module
	Integrating this into a module

	Final Thoughts

