
Merge conflicts are not fun to deal with, sometimes they can be downright nasty

to resolve. This can be especially true when they happen on the

project.pbxproj files. Conflicts on this file are more tricky to resolve than

most because it governs the contents of your project and actions taken during

the build process. This can be non-trivial to deal with on simple project files, and

downright crushing when it happens on complex projects. As part of my job I

maintain our project files and build systems. This post is about some of the

methods I use to avoid causing file conflicts on pbxproj files altogether.

Within the project.pbxproj file there is a root object, this defines the base

structure and layout of the contents of the whole file. This root object defines

the way the files are organized in Xcode's Navigator panel, as well as a list of

targets that are defined in the project. The more targets you have per project

the more files you will have in total, and if any of those files are used in multiple

targets the greater the likelihood of a merge conflict occuring.

The most major thing to avoid is having multiple targets that build the same

product in slightly different ways. This means you should avoid having a target

for each platform (OS X, iOS, WatchOS, tvOS) you want to build for. Having

multiple targets that share the same files and settings within the

project.pbxproj file is a recipe for disaster. Since each of these files are

identifier by a unique identifier, bad merges can happen that will turn your

project file to garbage due to some unfortunately matching logic on these

identifier strings. If you need to build a framework or library for multiple

platforms, then you should be using schemes with different build configurations

set to alter the values of your build settings to do this rather than duplicate the

target multiple times. This is the purpose for scheme and build configuration

Managing Build Settings and

Avoiding pbxproj Conflicts

Target Management and

Cleanliness

Avoid Multiple Targets for Building the

Same Product

pairings within the Xcode build system. Each build configuration allows an

xcconfig file to be set per target to import custom settings to use. This is where

you should be storing the platform-specific values for building the target. By

removing duplicated targets you drastically cut down on the footprint of the file

and amount of places where a bad merge could happen and break your project

file.

All applications start out small, then will grow in size over time. Many people will

just keep adding new files to their application target because it is a very simple

process. After a while this becomes completely unmanageable and difficult to

change. If this sounds like your app, then you should consider taking an intitial

step of grouoping code into separate targets that better describe the

functionality they add or perform for the app. Slimming down the size of the

targets will make it easier to determine if ViewControllerFoo.m should not

be include in the CoreDataModels.a target and that line of your conflict can

be removed. Making many smaller targets will also give you the benefit of

speeding up build times by allowing these independent bits of code be compiled

in parallel.

In the last section I mentioned that very large targets are not advisble. My other

suggestion about target management is to avoid creating any more than one or

two targets per project file (this is not including test targets). This may sound

like contradictory advice, but this is a two step process; 1. Make smaller and

more modular targets, 2. move these small targets into separate project files.

This keeps each project file only referencing files it absolutely needs and a tight

focus on what the purpose of the project file is. This can result in the use of

Xcode Workspaces over Xcode Projects due to the need to be able to build

targets from many project files at once. Once you have done this step in

management, you will want to add some test targets to each of your new

project files to accompany the executable targets that were created. This will

reduce the possibility of merge conflicts because it makes it much more unlikely

that any one of these project files will be altered in any sigificant way in any one

commit.

Another thing that should be done is some regularly hygene maintenance of

your project files and targets. This means periodically going through and

Avoid Massive Targets

Number of Targets per Project

Target Hygene

cleaning out erronously added build settings, removing old unused code from

targets and remove the references to those files from the project or delete them

entirely. To make the changes be merged easier, any time you make any sort of

modificiation to your project files you should make each edit a separate commit.

This is extremely good practice because Xcode lacks any sort of "undo"

mechanism for changes made to a project file's configuration. Without making a

commit on each small change you can -- it can lead to a single mistake costing

your hours of time trying to restore the state of the project file. Xcode has a

built in way of managing this, called Xcode Snapshots, but I have seen so few

people use this or understand why they would want to that I recommend people

directly commit these changes to source control instead. This means any time a

pbxproj file shows up in a modified state in source control, you should make

a separate commit that only contain the project.pbxproj file to make

tracking the state changes easier.

So far all the suggestions have been centered around how to manage the

changes to the project.pbxproj file and how to reduce the overall size and

contents of that file. Earlier in the post I mentioned the use of Xcode Schemes

and Build Configurations. It is important to point out that Schemes exist outside

of the project file, and contain references that are resolved to identifiers inside

of the project file. There is no overhead in creating and using many different

schemes. Doing this will not result in your project file being harder to manage.

Build Configurations on the other hand, are stored within the project file. Each

Build Configuration contains a list of build settings that are used to influence

how the build is performed. By default Xcode adds a lot of default settings to

each target when it is created. Many of these are helpful, but this can become

extremely burdensome to maintain so it is advisable to use xcconfig files to

manage this instead.

There is another step that can be taken that can drastically reduce the file size

of your Xcode Project files, build setting management. Not only does each

target in your project file have a set of build settings, but also the project file

has a set of build settings that it uses as a base configuration.

Schemes and Build Configurations

Build Settings Management

I love using xcconfig files. They are one of my favourite features of Xcode's

build system. They allow me to define my build settings in a plain text file and

customize how I want the values to resolve at build-time. To take full advantage

of them I have removed all the values that are set in the project file and moved

them into a series of xcconfig files. This removes a lot of the burden of

managing build settings within Xcode and they exist only in these xcconfig files.

One of the little-known features of the Build Settings view in Xcode is that if you

select a row you can copy the name of the build setting and how it resolves for

each configuration. Using this trick, it becomes very easy to migrate a target to

using xcconfig values:

Open the project or workspace file in Xcode

Select the project file in the navigator panel

Select a target from the list that appears

Click on the tab labeled "Build Settings"

Select "Levels" and "All" options above the table that is now displayed

Create a new Xcode Configuation file and open that in another window or

open another editor with a new document.

Select a row that has a green box around the bold lettering in the column

that displays the current target's name. This should be next to the column

that says "Resolved".

Copy the selected row, and paste it into the opened new configuration

document that was created. The build setting should be pasted on one or

more lines which values for each of the variation of that setting.

Going back to the Xcode window that displays the build settings, you can

now press "delete" with that row selected to clear the values out of it.

Repeat this to migrate all your settings from the target in Xcode to the

xcconfig file.

Once the migration is complete you will want to import all these settings so

the target uses them again. To do this you will need to click on the project

level settings (above the list of targets in Xcode)

Click on the "Info" tab at the top of the view now.

For each build configuration expand the collapsed list of targets, and assign

the xcconfig file(s) you created to the targets that they correspond to.

There is a bit more to doing this process than described in the steps above, but

it should give you a basic understanding of how to perform a migration to

xcconfig files. For additional information on how to use xcconfig files you should

check out the guide I wrote about them.

xcconfig Files Are Your Friends

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

https://pewpewthespells.com/blog/xcconfig_guide.html

Additionally, moving all build settings that share the same values across all my

targets onto the project level has been extremely useful for controlling how a

build is performed. I do this to all the warning and error flags that can be set,

within Xcode. This is one less thing I have to worry about and I can spend more

time concentrating on driving down the number of warnings my code generates

to keep it in good shape. Since any target in the project file will inherit the

values set by the project's build settings, it takes some of the burden off of what

you need to include in the xcconfig files.

If you are diligent about following these practices you should almost never see a

bad merge conflict happen. Sometimes you still will get them though. This will

typically be when you are making non-trivial changes to the overall structure of

the project file. To handle these situations my recommendation is to pick the

version that is closest to what you want to have the project file represent, then

perform any additional tweaks by hand. While this doesn't sound ideal there are

few alternatives. Generally the structure of your project files should not be

changing in any signficant manner often. If they are then I would suggest you

look into alternative ways to manage building your targets (such as: make,

cmake, autotools, ninja, etc). If you rely on Xcode's build system, then you

should consider auto-generating your project files and not commit them into

source control.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

Project Level Settings

My Project Still Has a Bad Merge

https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Managing Build Settings and Avoiding pbxproj Conflicts
	Target Management and Cleanliness
	Avoid Multiple Targets for Building the Same Product
	Avoid Massive Targets
	Number of Targets per Project
	Target Hygene
	Schemes and Build Configurations

	Build Settings Management
	xcconfig Files Are Your Friends
	Project Level Settings

	My Project Still Has a Bad Merge

