
Xcode uses SDK bundles to gather the resources needed to build code against a

desired target. SDK bundles are comprised of a plist file named

SDKSettings.plist which dictates the settings used for that particular SDK

and how it should be consumed by Xcode. There are two types of SDK bundles,

Base and Sparse, which perform different functions. This post documents how to

create your own SDK bundles that can be used with Xcode.

SDK Types

Configuration

SDK Contents

Using with Xcode

Related Radars

#####Base SDK These are the type of SDKs that ship with Xcode. They

contain the all the headers and system libraries/frameworks necessary to build

code against a specific OS version. Only one Base SDK can be used for a target

for compilation. The Base SDK is assigned by specifying SDKROOT for the

target.

#####Sparse SDK These are SDK bundles that contain supplimental libraries/

frameworks and headers. Sparse SDKs have been supported for a long time in

Xcode. While only one Base SDK can be used, multiple Sparse SDKs can be used

in conjunction with the Base SDK to provide access to additional resources.

↑ Table of Contents

#####SDKSettings.plist The SDKSettings.plist file is a plist that contains

information necessary for loading and resolving the SDK within Xcode. This file

lives at the root of the SDK bundle.

SDKs

Table of Contents

•

•

•

•

•

SDK Types

Configuration

https://pewpewthespells.com/blog/buildsettings.html#sdkroot
https://pewpewthespells.com/blog/buildsettings.html#sdkroot

Key Name Type Description

CanonicalName String
Name of the SDK when being specified to the

toolchain

CustomProperties Dictionary
Custom build settings variables that should be

imported when using this SDK

DefaultProperties Dictionary
Default values for build setting variables when

using this SDK

DisplayName String The name of the SDK as displayed by Xcode

MinimalDisplayName String Alternative (reduced) name for this SDK

DefaultDeploymentTarget String
Default deployment target of the OS version

when using this SDK

MaximumDeploymentTarget String
Maximum deployment target of the OS version

when using this SDK

MinimumSupportedToolsVersion String
Lowest supported version of Xcode that this SDK

should be used with

SupportedBuildToolComponents
Array

[Strings]

Used in SDKs for OS X, contains the string

com.apple.compilers.gcc.headers.4_2

Version String Version of the OS for this SDK

isBaseSDK String
"YES" or "NO" indicating if this should be treated

as a Base SDK

DocSetFeedName String Display name of the docset feed for this SDK

DocSetFeedURL String URL of the docset feed for this SDK

Toolchains
Array

[Strings]

List of identifiers of toolchains that should be

used with this SDK

PropertyConditionFallbackNames
Array

[Strings]

Used in WatchOS SDK, contains the string

embedded

AlternateSDK String
CanonicalName of another SDK to use when

targeting this SDK isn't appropriate

#####Custom Environments

Note: This only applies to Base SDKs, Sparse SDKs don't have these settings

read from them.

The DefaultProperties and CustomProperties dictionary items on this

plist can be used to enhance the build process. They are treated as SDK level

build settings that all targets should inherit. For example, if you create a SDK

that must always have -ObjC passed, you can add a key to

DefaultProperities for OTHER_LDFLAGS with that flag as the value. This

means you won't have to add that flag on the project or target level, it will

already be inherited from the SDK. Similiarly you can use OTHER_CFLAGS to

provide additional library and header search paths for your SDK.

If you need to specify supplimentary variables to use with part of your build

process, eg relative paths to a framework or library, they can be provided in the

CustomProperties dictionary. To create relative paths for any files in your

SDK, use $(SDK_DIR) as the start of your path. This will provide the path to

the root of the SDK bundle. Example of defining a path to a specific framework

in the SDK:

#####Example Base SDKSettings.plist

...

<key>CustomProperties</key>

<dict>

 <key>MY_CUSTOM_FRAMEWORK_NAME</key>

 <string>Foo</string>

 <key>MY_CUSTOM_FRAMEWORK_PATH</key>

 <string>$(SDK_DIR)/System/Library/Frameworks/$(MY_CUSTOM_FRAMEWORK).framework</strin

</dict>

...

#####Example Sparse SDKSettings.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/Property

<plist version="1.0">

<dict>

 <key>CanonicalName</key>

 <string>macosx10.9</string>

 <key>CustomProperties</key>

 <dict>

 <key>KERNEL_EXTENSION_HEADER_SEARCH_PATHS</key>

 <string>$(KERNEL_FRAMEWORK)/PrivateHeaders $(KERNEL_FRAMEWORK_HEADERS)</string>

 </dict>

 <key>DefaultProperties</key>

 <dict>

 <key>MACOSX_DEPLOYMENT_TARGET</key>

 <string>10.9</string>

 <key>PLATFORM_NAME</key>

 <string>macosx</string>

 <key>DEFAULT_KEXT_INSTALL_PATH</key>

 <string>$(LIBRARY_KEXT_INSTALL_PATH)</string>

 </dict>

 <key>DisplayName</key>

 <string>OS X 10.9</string>

 <key>MaximumDeploymentTarget</key>

 <string>10.9</string>

 <key>MinimalDisplayName</key>

 <string>10.9</string>

 <key>MinimumSupportedToolsVersion</key>

 <string>3.2</string>

 <key>SupportedBuildToolComponents</key>

 <array>

 <string>com.apple.compilers.gcc.headers.4_2</string>

 </array>

 <key>Version</key>

 <string>10.9</string>

 <key>isBaseSDK</key>

 <string>YES</string>

</dict>

</plist>

↑ Table of Contents

An SDK can contain anything necessary to perform a build. They typically

contain frameworks, libraries, headers, resource, scripts/binaries, and any other

type of asset that the build system would rely on.

####Frameworks, Libraries, and Headers Xcode will automatically search

specific locations for any frameworks, libraries, and headers that have been

included in the SDK bundle. These paths can differ based on the type of the

SDK, additional paths can be specified by using the -isystem and

-iframework flags to the compiler. Placing files in the locations listed below

according to SDK type and if the files are a framework/library/headers to make

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/Property

<plist version="1.0">

<dict>

 <key>AlternateSDK</key>

 <string>macosx10.9</string>

 <key>CanonicalName</key>

 <string>PrivateMacOSX10.9</string>

 <key>CustomProperties</key>

 <dict/>

 <key>DefaultProperties</key>

 <dict/>

 <key>DisplayName</key>

 <string>OS X Private (10.9)</string>

 <key>MaximumDeploymentTarget</key>

 <string>10.9</string>

 <key>MinimalDisplayName</key>

 <string>Private (10.9)</string>

 <key>MinimumSupportedToolsVersion</key>

 <string>3.2</string>

 <key>SupportedBuildToolComponents</key>

 <array>

 <string>com.apple.compilers.gcc.headers.4_2</string>

 </array>

 <key>Version</key>

 <string>Private (10.9)</string>

 <key>isBaseSDK</key>

 <string>NO</string>

</dict>

</plist>

SDK Contents

them be automatically found. (All paths are based on the root of the SDK

bundle)

Type Base SDK Search Paths Sparse SDK Search Paths

Frameworks /Library/Frameworks/ , /System/Library/Frameworks/ /System/Library/Frameworks/

Libraries /usr/lib/ , /usr/local/lib/ /usr/lib/ ,

Headers /usr/include/ , /usr/local/include/ /usr/include/

####Assets Additional types of assets (graphics, fonts, bundles, strings files,

etc) can be bundled as part of a SDK. There is no built-in support for finding any

of these assets in the SDK. You will have to provide a way to access them from

the SDK so they can be utilized.

####Executables While it is possible to ship scripts and executable binaries as

part of an SDK bundle, Xcode's tooling doesn't know how to find these based on

the specified SDK. To access these files you need to define the paths to run

them directly since xcrun won't find them. If they are part of the Base SDK,

then they can be found by using $(SDKROOT) as the base path or custom

variables set via the SDKSettings.plist, however if they are part of a Sparse SDK

then you will have to define the paths yourself.

↑ Table of Contents

#####Base SDK Xcode searches for Base SDKs based on the target platform

bundles found in /Platforms/ directory in the currently selected

DEVELOPER_DIR path. The search path for SDKs in a platform bundle is

/Developer/SDKs/ , eg:

Using with Xcode

https://pewpewthespells.com/blog/buildsettings.html#sdkroot
https://pewpewthespells.com/blog/buildsettings.html#sdkroot
https://pewpewthespells.com/blog/buildsettings.html#developer_dir
https://pewpewthespells.com/blog/buildsettings.html#developer_dir

The xcodebuild command line tool allows you to specify the SDK to use when

building by providing a flag and either a path or name of an SDK (see

CanonicalName in SDKSettings.plist). This tool will find SDKs specified by path,

if they exist inside of the current DEVELOPER_DIR path. If you specify a SDK by

path that exist outside of that directory then it will be ignore and fall back to the

default SDK. To view the names of SDKs that are found by xcodebuild and Xcode

you can run the following command:

#####Sparse SDK Sparse SDKs must be specified using the

ADDITIONAL_SDKS build setting. Multiple Sparse SDKs can be specified, they

must be paths to the SDK bundle directory and each path must be separated by

a space. The list is sorted by precedence, SDKs higher in the list will be

searched first. If a header or library exists in more than one SDK, the first

instance that is found will be used. The build system Xcode uses will resolve

what additional flags must be added to compile.

Linking:

Linking libraries and frameworks from a Sparse SDK becomes a bit more opaque

than linking a library that resides in a Base SDK. When adding a library or

framework to link from a target's Build Phases panel, Xcode will only display a

|-- /Applications/Xcode.app/Contents/Developer/Platforms/

 |-- MacOSX.platform

 |-- Developer

 |-- SDKs

 | -- MacOSX10.9.sdk

 | -- MacOSX10.10.sdk

 |-- iPhoneOS.platform

 |-- Developer

 |-- SDKs

 | -- iPhoneOS.sdk

 |-- iPhoneSimulator.platform

 |-- Developer

 |-- SDKs

 | -- iPhoneSimulator.sdk

$ xcodebuild -showsdks

OS X SDKs:

 OS X 10.9 -sdk macosx10.9

 OS X 10.10 -sdk macosx10.10

iOS SDKs:

 iOS 8.2 -sdk iphoneos8.2

iOS Simulator SDKs:

 Simulator - iOS 8.2 -sdk iphonesimulator8.2

https://pewpewthespells.com/blog/buildsettings.html#developer_dir
https://pewpewthespells.com/blog/buildsettings.html#developer_dir
https://pewpewthespells.com/blog/buildsettings.html#additional_sdks
https://pewpewthespells.com/blog/buildsettings.html#additional_sdks

list of libraries and frameworks that are in the Base SDK. You can use the "Add

Other" button to navigate to the library you want to link, however this can lead

to Xcode using absolute paths when adding the library as a reference to the

project file. This will work fine until the Sparse SDK is moved or the path

otherwise changes. To avoid this issue you can link the library by supplying the

linker flags for it; either -l <library name> for stand alone libraries, or

-framework <framework name> for frameworks. Since Xcode's build system

will already be supplying the search paths for the Sparse SDK based on what

includes you have, this will properly resolve and link.

Copying:

To handle copying resources or frameworks into an application bundle I would

recommend either:

setting up an xcconfig file that has relative paths to the Sparse SDK and has

variables to the files that need to be copied so they can be accessed by a

script to perform the copy into the application bundle before signing.

Example xcconfig file:

(Note: Please see my post about xcconfig files if you are unfamiliar with

using xcconfig files)

•

 // Additional SDKs.xcconfig

 // defining variables for the first Sparse SDK that should be used

 FOO_SDK = ~/Library/Application\ Support/Developer/Shared/Xcode/SDKs/Foo.sparse.sd

 TESTING_FRAMEWORK = Testing

 COPY_TESTINGFRAMEWORK_PATH = $(FOO_SDK)/System/Library/Frameworks/$(TESTING_FRAMEW

 // defining variables for the second Sparse SDK that should be used

 BAR_SDK = ~/Library/Application\ Support/Developer/Shared/Xcode/SDKs/Bar.sparse.sd

 UI_ADDITIONS_LIBRARY = UIAdditions

 UI_ADDITIONS_LIBRARY_PATH = $(BAR_SDK)/usr/lib/lib$(UI_ADDITIONS_LIBRARY).dylib

 // setting the ordering of the additional Sparse SDKs

 ADDITIONAL_SDKS = $(FOO_SDK) $(BAR_SDK)

 // Configuring the linker flags to link the Testing framework from the first spar

 // to link the UIAdditions library from the second Sparse SDK

 OTHER_LDFLAGS = $(inherited) -framework $(TESTING_FRAMEWORK) -l $(UI_ADDITIONS_LIB

 // Now you have the variables $(COPY_TESTINGFRAMEWORK_PATH) and $(UI_ADDITIONS_L

 // and you can add an additional script phase after the regular Copy Items build p

 // these paths into the application bundle in the correct locations. You may also

 // after copying them manually like this depending on what your target requires.

https://pewpewthespells.com/blog/xcconfig_guide.html

adding the Sparse SDK to the project file as a reference. This would allow

you to link as part of the Link Libraries build phase, and not have to add

linker flags for each library. Note that Xcode will add the reference as an

absolute path by default, changing the path to be defined as a relative path

to prevent it breaking can be difficult and may require editing the

project.pbxproj file directly.

↑ Table of Contents

Radar rdar://19969415

Status Open

Title xcrun does not use SDK specific search paths

Details
xcrun will not search active or specified SDKs for tools, it only

searches the platform bundle's paths.

Radar rdar://21426816

Status Open

Title Sparse SDK documentation

Details

There is no document that outlines how Sparse SDKs work with

Xcode. How Sparse SDKs are used has changed since their

introduction and this remains an undocumented yet supported

feature in the shipping version of Xcode.

Radar rdar://21426869

Status Open

Title mksdk tool is not updated

Details

The command line tool mksdk hasn't been properly updated to

work with how Sparse SDKs are used now. This tool needs to be

updated to help create SDKs.

•

Related Radars

rdar://19969415
rdar://21426816
rdar://21426869

Radar rdar://21426912

Status Open

Title mksdk documentation

Details

The usage and help for the mksdk tool is very vague and

doesn't give a clear idea as to how to use the tool properly. A

manual page and updated usage would be helpful.

Radar rdar://21426990

Status Open

Title Define where Base SDKs can exist

Details

The location of where Base SDKs (System SDKs) can exist and be

found by the Xcode build system isn't defined in any of the

developer tools documentation. Defining how SDK bundles are

found and processed would be very useful.

Radar rdar://21427092

Status Open

Title
Define what search paths are used for contents of Sparse SDKs

vs Base SDKs

Details
The search paths for contents of a Sparse SDK vs a Base SDK

differ. These differences and why they exist are not documented.

Radar rdar://21427142

Status Open

Title Sparse SDKs Framework search paths

Details
Frameworks are not search for in /Library/Frameworks/ in a

Sparse SDK.

rdar://21426912
rdar://21426990
rdar://21427092
rdar://21427142

Radar rdar://21427166

Status Open

Title Sparse SDK Header Search Paths

Details
Headers are not searched for in /usr/local/include/ in

Sparse SDKs.

Radar rdar://21427221

Status Open

Title xcodebuild -sdk flag doesn't accept some SDKs

Details

xcodebuild's usage describes the -sdk flag as being able to

specify the CanonicalName of an SDK or the path to an SDK.

However the tool will only accept paths to SDKs that exist inside

of the currently selected developer directory (found by running

xcode-select -p .

Radar rdar://21427291

Status Open

Title Xcode doesn't list libraries from Sparse SDKs

Details

When adding a linked library to a target's linking build phase, the

list of libraries shown in the drop down doesn't include libraries

that are found inside of Sparse SDKs. it will list libraries from the

Base SDK and the developer directory, but not any supplemental

SDKs that are used with the target.

Radar rdar://21427330

Status Open

Title Support for file references in Xcode using relative paths

Details

There should be built-in support for Xcode add files by relative

path of the user's home directory ~/ rather than creating

absolute paths when adding new files.

rdar://21427166
rdar://21427221
rdar://21427291
rdar://21427330

Radar rdar://21427411

Status Open

Title
DefaultProperties and CustomProperties importing from Sparse

SDK SDKSettings.plist files

Details

Currently Sparse SDKs do not support creation or modification of

variables based on the DefaultProperties and CustomProperties

keys in the SDKSettings.plist. Base SDKs do support this behavior.

Sparse SDKs should be able to override and set default settings

as well.

↑ Table of Contents

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

rdar://21427411
https://cash.me/$samanthademi
https://cash.me/$samanthademi

	SDKs
	Table of Contents
	SDK Types
	Configuration
	SDK Contents
	Using with Xcode
	Related Radars

