
The act of linking libraries is a form of code dependency management. When

any app is run, its executable code is loaded into memory. Additionally, any

code libraries that it depends on are also loaded into memory. There are two

type of linking: static, and dynamic. Both offer different benefits to the

developer and should be used according to these benefits. This blog post will

cover the benefits offered by each and then explain the basics of how to create

and link your own libraries on OS X and iOS.

Dynamic linking is most commonly used on OS X and iOS. When dynamic

libraries are linked, none of the library's code is included directly into the linked

target. Instead, the libraries are loaded into memory at runtime prior to having

symbols getting resolved. Because the code isn't statically linked into the

executable binary, there are some benefits from loading at runtime. Mainly, the

libraries can be updated with new features or bug-fixes without having to

recompile and relink executable. In addition, being loaded at runtime means

that individual code libraries can have their own initializers and clean up after

their own tasks before being unloaded from memory. For more information on

overview and design, see Apple's Dynamic Library Programming Topics.

Dynamic libraries are a type of Mach-O binary1 that is loaded at launch or

runtime of an application. Since the executable code in a dynamic library isn't

statically linked into target executable, this affords some benefits when needing

to reuse the same code. For example, if you have an application and a daemon

or extension that needs to make use of the same code, that code only has to

exist in a single location -- the dynamic library, rather than in both the

executable's binary and the daemon's binary. Since dynamic libraries are loaded

at runtime, the library is responsible for telling the linker what additional code is

needed. This removes the burden of managing what all of the code that you use

needs to operate.

Static and Dynamic Libraries

Linking Libraries

Dynamic Linking

• Libraries

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/OverviewOfDynamicLibraries.html

Dynamic frameworks are similar to dynamic libraries. Both are dynamically

linkable libraries, except a dynamic framework is a dynamic library embedded

in a bundle. This allows for versioning of a dynamic library and sorting

additional assets that are used by the library's code.

This is a walk-through of the steps required to build libfoo_dynamic.dylib

bar.h

bar.c

Starting out with the files bar.h and bar.c . The header file defines the

function fizz() , which returns an integer value. The implementation file

imports the CoreFoundation framework and implements the function fizz to

print the strings "buzz" before returning 0 .

Compiling:

This creates the object file2, Mach-O binary with type MH_OBJECT , named

"bar". One of these will be generated for each of the files compiled in the library.

Creating Library:

• Frameworks

• Building

#ifndef __foo__bar__

#define __foo__bar__

#include <stdio.h>

int fizz();

#endif /* defined(__foo__bar__) */

#include "bar.h"

#include <CoreFoundation/CoreFoundation.h>

int fizz() {

 CFShow(CFSTR("buzz"));

 return 0;

}

$ clang -c bar.c -o bar.o

This creates the dylib (dynamic library) and links against libSystem and

CoreFoundation.framework . The dylib is a Mach-O binary file with a type

MH_DYLIB . This will be loaded dynamically at launch time by dyld as a

dependency of another binary.

main.c

In this example, importing the "bar.h" header for the dynamic library, and

calling fizz() directly.

Compiling:

This will generate the object file for main.

Linking:

This will generate a binary executable from the main object file, also passing

-lSystem for dyld_stub_binder

-lfoo_dynamic for linking against libfoo_dynamic.dylib

and finally, outputting a binary named test_dynamic .

Running:

Symbols:

$ libtool -dynamic bar.o -o libfoo_dynamic.dylib -framework CoreFoundation -lSystem

• Linking

#include "bar.h"

int main() {

 return fizz();

}

$ clang -c main.c -o main.o

$ ld main.o -lSystem -L. -lfoo_dynamic -o test_dynamic

•

•

$./test_dynamic

buzz

This lists all of the symbols in the main binary. Both the symbol main and

fizz are listed here. The symbol fizz does not have an address, because it

does not exist inside of the main binary, it exists in the dynamic library that was

created. This symbol will be resolved at launch time, after all the referenced

dependencies are loaded into memory.

References:

The resulting binary only links against libSystem and the dylib that was created.

The library foo_dynamic is responsible for linking against any additional

libraries it needs. This is resolved at launch time, dynamically. In this case, the

search path for libfoo_dynamic.dylib is going to be the same as the search

location as the main executable.

Dynamic libraries and frameworks are loaded at launch time by the dynamic

linker. They have associated search paths to help the linker find where they are

located on the file system and load them.

Unlike dynamic, linking static libraries includes the object file code from the

library into the target's binary. This results in a larger size on disk and slower

launch times. Because the library's code is added directly to the linked target's

binary, it means that to update any code in the library, the linked target would

also have to be rebuilt.

Up until iOS 8, statically linked libraries were the de-facto way to ship and

include any third-party code in an application.

Note: this is not to be confused with statically linking binaries.

$ nm test_dynamic

0000000000001000 A __mh_execute_header

 U _fizz

0000000000001fa0 T _main

 U dyld_stub_binder

$ otool -L test_dynamic

test_dynamic:

 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1197.1.1)

 libfoo_dynamic.dylib (compatibility version 0.0.0, current version 0.0.0)

Static Linking

https://developer.apple.com/library/mac/qa/qa1118/_index.html

A static library is a container for a set of object files. Static libraries use the file

extension ".a", which comes from the (ar)chive file3 type. An archive file was

designed to contain a collection of files. This is ideal for the transport and use of

many object files that comprise a single code library. However the linker can

only use object files of a single architecture, so there are two different container

formats for static libraries based on if they support single or multiple

architectures.

All object files of the same architecture are stored in a single archive file. This is

the type of container file that the linker expects per architecture. The object

files are packaged by the utility ar, which stores the contents of each object file.

OS X uses an implementation of ar that is similar to the BSD variant; the task

of organizing the symbol lookup and table creation to a tool called ranlib . On

OS X, this is an alias for libtool. This utility is responsible for mapping the

symbols stored in the object files and will warn if there are mismatching

architectures used. This will generate an archive file that can be examined and

operated on using the ar utility.

Since a single archive file can only support a single architecture, a separate file

format is used to act as a single container for multiple libraries. The file format

chosen for this was the fat Mach-O binary. Due to this change in file type, ar

can no longer operate on the static library. A fat Mach-O binary is a very simple

container format that can house multiple files of different architectures.

While this is a Mach-O binary file type, it strictly acts as a safe container for

multiple architectures. This format is used to store a copy of the library for each

desired architecture type. To modify a static library that uses the fat Mach-O

binary file type, the command lipo must be used. This can also extract a copy of

the static library based on a specific architecture.

• Libraries

// This is at the very beginning of the file

struct fat_header {

 uint32_t magic; // This indicates the endianness of the binary file

 uint32_t nfat_arch; // This indicates how many architecture headers are defined for

};

// This is the architecture header definition, these definitions immediately follow the

struct fat_arch {

 cpu_type_t cputype; // This defines the CPU family type: "Intel", "ARM", "PP

 cpu_subtype_t cpusubtype; // This defines the CPU variant for the family type: "i3

 uint32_t offset; // Offset in the file where the architecture specific da

 uint32_t size; // Length of the architecture specific data in the file

 uint32_t align; // Power of 2 alignment data for the architecture type

};

x-man-page://1/ar
x-man-page://1/libtool
x-man-page://1/lipo

A static framework is a bundle containing a static library file. These frameworks

are just a convenient way to publish a static library that uses external assets;

such as images, fonts, or language files. In addition, static frameworks behave

exactly like static libraries. They are statically linked into the executable binary,

not loaded at runtime.

This is a walk-through of building libfoo_static.a . This uses the same files

used in the dynamic library example.

bar.h

bar.c

Compiling:

This creates the object file named "bar". Again, one of these will be generated

for each of the files compiled in the library.

Creating Library:

• Frameworks

• Building

#ifndef __foo__bar__

#define __foo__bar__

#include <stdio.h>

int fizz();

#endif /* defined(__foo__bar__) */

#include "bar.h"

#include <CoreFoundation/CoreFoundation.h>

int fizz() {

 CFShow(CFSTR("buzz"));

 return 0;

}

$ clang -c bar.c -o bar.o

$ ar -rcs libfoo_static.a bar.o

or

$ libtool -static bar.o -o libfoo_static.a

Unlike the dynamic library, when creating the static library there are no other

libraries that are linked against it. This is because the (ar)chive file is just a

container for the object files that need to be built. By running either ar or

libtool on the set of object files generated by the compiler, they will be

packaged up into an archive that can contain multiple sets of architecture and

symbol definitions.

Running ar directly will produce a single archive file with just the object files

that were passed. It will then call ranlib on this archive file it creates to sort

the object files and also resolve any duplicate symbol names contained in the

archive. Using libtool instead results in the same behavior and output, the

code path for it changes slightly to call against libstuff instead of the tool

ar .

Due to the fact this is not an executable binary file, static libraries do not retain

any linkage they might need. This pushes the burden of tracking which

dependencies to use onto the linked target executable file rather than on the

static library itself. Luckily, Apple has implemented a load command for

handling this, LC_LINKER_OPTION . This appears in a target's build settings in

Xcode under the name "Link Frameworks Automatically". Enabling this option

will append new load commands to each object file that specify linker flags that

should be used with each object file. These flags can be displayed by using the

following command:

$ otool -l <static library> | grep LC_LINKER_OPTION -A 4

main.c

In this example, importing the "bar.h" header for the static library, and calling

fizz() directly.

Compiling:

This will generate the object file for main.

Linking:

• Linking

#include "bar.h"

int main() {

 return fizz();

}

$ clang -c main.c -o main.o

This will generate a binary executable from the main object file, also passing

-lSystem for dyld_stub_binder

-framework CoreFoundation for linking against

CoreFoundation.framework

-lfoo_static for linking against libfoo_static.a

and finally, outputting a binary named test_static .

Running:

Symbols:

Here we see that the symbol fizz , which was part of the static library, has an

address associated with it. This is because the executable code that was

associated with calling the function fizz() is now stored inside the main

binary executable. Additionally there are references to CFShow and

CFConstantStringClassReference , which exist as part of the

CoreFoundation framework.

References:

When checking the list of linked libraries via otool, the main binary only links

against libsystem. This is because now that the symbols from libfoo_static

have been added to the main binary file. Since the code from libfoo_static

depended on being linked against CoreFoundation, there is a dependency

reference to that in the main binary.

$ ld main.o -framework CoreFoundation -lSystem -L. -lfoo_static -o test_static

•

•

•

$./test_static

buzz

$ nm test_static

 U _CFShow

 U ___CFConstantStringClassReference

0000000000001000 A __mh_execute_header

0000000000001f90 T _fizz

0000000000001f70 T _main

 U dyld_stub_binder

$ otool -L test_static

test_static:

 /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compa

 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1197.1.1)

Overview of Dynamic Libraries

Dynamic Library Programming Topics

Mach-O Programming Topics

Mach-O File Format ABI

Object File

UNIX (ar)chive

OS X ABI Dynamic Loader Reference

cctools source code

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

See "Further Reading" for "Mach-O Programming Topics" ↩

See "Further Reading" for "Object File" ↩

See "Further Reading" for "UNIX (ar)chive" ↩

[home | parent | top]

Further Reading

•

•

•

•

•

•

•

•

1.

2.

3.

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/OverviewOfDynamicLibraries.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/0-Introduction/introduction.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html
http://en.wikipedia.org/wiki/Object_file
http://en.wikipedia.org/wiki/Ar_(Unix)
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/MachOReference/index.html
http://opensource.apple.com/source/cctools/
https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Static and Dynamic Libraries
	Linking Libraries
	Dynamic Linking
	• Libraries
	• Frameworks
	• Building
	• Linking

	Static Linking
	• Libraries
	• Frameworks
	• Building
	• Linking

	Further Reading

