
###Background: There appears to be some very vague handling of how to get

this to work properly from Apple, this post is meant to explain the situation and

problems in detail with the goal that it can help people work around these errors

until Apple implements a fix or better explains the potential problems. The 

sample app was provided to me by Samuel Giddins, and I worked with them to

implement a patch for CocoaPods.

###Issue: Scenario: You have an application written in Objective-C. This

application contains no Swift code. This application has a couple of

dependencies. You are targetting iOS 8+ and have made these dependencies

compile as frameworks or dylibs. One or more of these dependencies is written

in Swift. When you try to run the application on a device you get an error

message such as:

This is an error thrown by the dynamic linker (dyld) that notifies us that the

requested library wasn't found in the runtime search paths. Quick way to check

this would be to jump to where application is built and then search for any Swift

libraries.

Technical Q&A QA1881 v2 -

Embedding Content with Swift in

Objective-C

dyld: Library not loaded: @rpath/libswiftCore.dylib

  Referenced from: /private/var/mobile/Containers/Bundle/Application/.../SwiftTorture.ap

  Reason: image not found

$ ls -lsa

total 0

0 drwxr-xr-x+  9 sam  staff  306 Nov 30 09:53 .

0 drwxr-xr-x@  5 sam  staff  170 Nov 30 09:53 ..

0 drwxr-xr-x+ 16 sam  staff  544 Nov 30 09:53 Pods-SwiftTorture

0 drwxr-xr-x+  7 sam  staff  238 Nov 30 09:53 Pods_SwiftTorture.framework

0 drwxr-xr-x+  3 sam  staff  102 Nov 30 09:53 Pods_SwiftTorture.framework.dSYM

0 drwxr-xr-x+  8 sam  staff  272 Nov 30 09:53 SwiftTorture.app

0 drwxr-xr-x+  3 sam  staff  102 Nov 30 09:53 SwiftTorture.app.dSYM

0 drwxr-xr-x+  6 sam  staff  204 Nov 30 09:53 SwiftTortureTests.xctest

0 drwxr-xr-x+  3 sam  staff  102 Nov 30 09:53 SwiftTortureTests.xctest.dSYM

$ find . -name "libswift*" | wc -l

       0

https://github.com/segiddins/SwiftTorture
https://twitter.com/segiddins


From this we can tell that the Swift runtime libraries are not being copied into

the application bundle so when the application is launched, it fails because it

does not have the necessary libraries included.

###Analysis: I would consider this to be a very common case: over-hauling an

existing application is a monumental task, but updating an existing common

library to Swift would be a good way to integrate new technology and update

older code. So, how is it that Xcode seems to fail in this seemingly straight-

forward use-case.

Based on some analysis of the build system process, this seems like it was

solved at one point. There is a build setting named 

EMBEDDED_CONTENT_CONTAINS_SWIFT  which stores a boolean value. There is

an Apple Q&A document that describes how to use this, however there are

some assumptions made as to how this flag is to be used.

When enabling the EMBEDDED_CONTENT_CONTAINS_SWIFT  flag on a target, a

new step is added to the build process. This step runs the target's build product

through a tool called swift-stdlib-tool , which parses the binary header to

get the list of linked dependencies (frameworks/libraries). It will then check the

paths of these linked dependencies to see if any of them contain references to

the Swift runtime libraries.

####Background on linked and install paths When a dynamic library is linked,

you supply the path to the library and the library's install path gets added to the

binary you are linking it to. This install path tells the linker where to look for this

library when the binary is loaded and launched by the dynamic linker. To see

these paths for yourself, you can dump them by running a binary through otool:

https://developer.apple.com/library/ios/qa/qa1881/_index.html


This lists all the paths to the linked libraries that must be loaded when the

binary is loaded by the dynamic linker. The paths that begin with @rpath/  are

resolved by looking up the LC_RPATH  load command in the binary header. In

this case it contains the path @executable_path/Frameworks , which will

resolve to the path to a directory named "Frameworks" that is alongside the

binary executable. To show this here are all the linked libraries that use 

@rpath/ :

To double check that these resolve correctly, here are the contents of the

resolved @executable_path/Frameworks  directory:

$ otool -L /Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/SwiftTo

/Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/SwiftTorture:

    @rpath/AFNetworking.framework/AFNetworking (compatibility version 1.0.0, current ver

    @rpath/Alamofire.framework/Alamofire (compatibility version 1.0.0, current version 1

    /System/Library/Frameworks/CFNetwork.framework/CFNetwork (compatibility version 1.0.

    /System/Library/Frameworks/CoreData.framework/CoreData (compatibility version 1.0.0,

    /System/Library/Frameworks/CoreGraphics.framework/CoreGraphics (compatibility versio

    @rpath/ISO8601DateFormatterValueTransformer.framework/ISO8601DateFormatterValueTrans

    /System/Library/Frameworks/MobileCoreServices.framework/MobileCoreServices (compatib

    @rpath/RKValueTransformers.framework/RKValueTransformers (compatibility version 1.0.

    @rpath/RestKit.framework/RestKit (compatibility version 1.0.0, current version 1.0.0

    @rpath/SOCKit.framework/SOCKit (compatibility version 1.0.0, current version 1.0.0)

    /System/Library/Frameworks/Security.framework/Security (compatibility version 1.0.0,

    /System/Library/Frameworks/SystemConfiguration.framework/SystemConfiguration (compat

    @rpath/TransitionKit.framework/TransitionKit (compatibility version 1.0.0, current v

    @rpath/Pods_SwiftTorture.framework/Pods_SwiftTorture (compatibility version 1.0.0, c

    /System/Library/Frameworks/Foundation.framework/Foundation (compatibility version 30

    /usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 228.0.0)

    /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)

    /System/Library/Frameworks/UIKit.framework/UIKit (compatibility version 1.0.0, curre

@rpath/AFNetworking.framework/AFNetworking (compatibility version 1.0.0, current version

@rpath/Alamofire.framework/Alamofire (compatibility version 1.0.0, current version 1.0.0

@rpath/ISO8601DateFormatterValueTransformer.framework/ISO8601DateFormatterValueTransform

@rpath/RKValueTransformers.framework/RKValueTransformers (compatibility version 1.0.0, c

@rpath/RestKit.framework/RestKit (compatibility version 1.0.0, current version 1.0.0)

@rpath/SOCKit.framework/SOCKit (compatibility version 1.0.0, current version 1.0.0)

@rpath/TransitionKit.framework/TransitionKit (compatibility version 1.0.0, current versi

@rpath/Pods_SwiftTorture.framework/Pods_SwiftTorture (compatibility version 1.0.0, curre



From these result we can see that the framework paths correctly resolve to

where they are found inside of the application bundle.

####Problematic behavior with checking @rpaths From the example given,

you can see how linked dependencies are found when an application is

launched. This process is repeated across each dependency that is linked. So,

using Alamofire.framework  as an example, I will repeat these steps again to

demonstrate the problematic behavior with using swift-stdlib-tool .

Here we see this framework contains references to loading the Swift runtime

libraries through @rpath . To work out where the locations of these libraries

are we must consult the LC_RPATH  commands in the framework:

$ ls -ls /Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/Framework

total 0

0 drwxr-xr-x+ 7 sam  staff  238 Nov 30 09:52 AFNetworking.framework

0 drwxr-xr-x+ 8 sam  staff  272 Nov 30 10:07 Alamofire.framework

0 drwxr-xr-x+ 7 sam  staff  238 Nov 30 09:52 ISO8601DateFormatterValueTransformer.framew

0 drwxr-xr-x+ 7 sam  staff  238 Nov 30 10:07 Pods_SwiftTorture.framework

0 drwxr-xr-x+ 7 sam  staff  238 Nov 30 09:52 RKValueTransformers.framework

0 drwxr-xr-x+ 7 sam  staff  238 Nov 30 09:53 RestKit.framework

0 drwxr-xr-x+ 7 sam  staff  238 Nov 30 09:52 SOCKit.framework

0 drwxr-xr-x+ 7 sam  staff  238 Nov 30 09:52 TransitionKit.framework

$ otool -L /Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/Framewo

/Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/Frameworks/Alamofi

    @rpath/Alamofire.framework/Alamofire (compatibility version 1.0.0, current version 1

    /System/Library/Frameworks/Foundation.framework/Foundation (compatibility version 30

    /usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 228.0.0)

    /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)

    /System/Library/Frameworks/CoreFoundation.framework/CoreFoundation (compatibility ve

    @rpath/libswiftCore.dylib (compatibility version 0.0.0, current version 0.0.0)

    @rpath/libswiftCoreGraphics.dylib (compatibility version 0.0.0, current version 0.0.

    @rpath/libswiftCoreImage.dylib (compatibility version 0.0.0, current version 0.0.0)

    @rpath/libswiftDarwin.dylib (compatibility version 0.0.0, current version 0.0.0)

    @rpath/libswiftDispatch.dylib (compatibility version 0.0.0, current version 0.0.0)

    @rpath/libswiftFoundation.dylib (compatibility version 0.0.0, current version 0.0.0)

    @rpath/libswiftObjectiveC.dylib (compatibility version 0.0.0, current version 0.0.0)

    @rpath/libswiftSecurity.dylib (compatibility version 0.0.0, current version 0.0.0)

    @rpath/libswiftUIKit.dylib (compatibility version 0.0.0, current version 0.0.0)



The framework gives us two paths to use for subsituting and searching for these

dependencies. First being @executable_path/Frameworks  which gets

resolved to being the path to the app path. In this case it would resolve to be

searching /Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/Frameworks/

The second search path is @loader_path/Frameworks , which would resolve to

be /Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/Frameworks/Alamofire.fra

For this library to load correctly, the Swift libraries must exist in at least one of

these locations.

####Using swift-stdlib-tool and EMBEDDED_CONTENT_CONTAINS_SWIFT As

mentioned, the purpose of swift-stdlib-tool  is to check the linked libraries

for the Swift runtime libraries and copy the respective library into the correct

location. The tool does this by checking each library path for a string starting

with "@rpath/libswift". If these paths are found, it will copy and then sign the

matching libraries into the target bundle.

To mark specific targets for this analysis and to have them include the Swift

runtime libraries you must set the flag EMBEDDED_CONTENT_CONTAINS_SWIFT

to YES  in the target's build settings. This flag is displayed as "Embedded

Content Contains Swift Code".

This is where it becomes problematic: If your app does not contain Swift code

and use multiple Swift frameworks, your app will ballon in size. This is because

enabling the flag, EMBEDDED_CONTENT_CONTAINS_SWIFT , on multiple

frameworks will result in the Swift runtime libraries being copied into each of

the framework bundles you have enabled that flag on. The Q&A document goes

on to say that this is a problem and the solution is to leave that flag turned off

on your frameworks and to enabled it on your app target instead.

This statement is only true and will only work if your app target also

links against the same Swift runtime libraries that your framework

depends on.

###Proposed Solutions:

####XCConfig Fix Last week I posted a link to a gist that included a script for

generating an xcconfig file that is intended to fix an issue with using Swift

$ otool -l /Users/sam/Desktop/SwiftTorture/build/Debug-iphoneos/SwiftTorture.app/Framewo

    cmd LC_RPATH

    cmdsize 40

    path @executable_path/Frameworks (offset 12)

--

    cmd LC_RPATH

    cmdsize 36

    path @loader_path/Frameworks (offset 12)



dynamic libraries in with non-Swift apps. Below is the python script I wrote to

generate the xcconfig file, and the resulting xcconfig file:

Script:



import sys

import os

import string

import subprocess

from subprocess import CalledProcessError

def make_call(call_args):

    error = 0;

    output = '';

    try:

        output = subprocess.check_output(call_args);

        error = 0;

    except CalledProcessError as e:

        output = e.output;

        error = e.returncode;

    return (output, error);

def make_linker_string(libs):

    linker_string = '';

    for lib in libs:

        linker_string += '-Wl,${SWIFT_STDLIB_PATH}/'+lib+' ';

    return linker_string;

def main(argv):

    swift_compiler_lookup = make_call(('xcrun','-f','swift'));

    swift_usr_path = os.path.dirname(os.path.dirname(swift_compiler_lookup[0].rstrip('\n

    swift_runtime_path = os.path.join(swift_usr_path, 'lib/swift/');

    swift_platforms = ['iphoneos', 'iphonesimulator', 'macosx'];

    swift_libraries = {

        'iphoneos': [],

        'iphonesimulator': [],

        'macosx': []

    };

    for platform in swift_platforms:

        swift_platform_runtime_path = os.path.join(swift_runtime_path, platform);

        find_dylib_results = make_call(('find',swift_platform_runtime_path,'-type','f','

        for lib_line in find_dylib_results[0].split('\n'):

            if lib_line != '':

                lib_name = lib_line.split(swift_runtime_path)[1].split('/')[1];

                if lib_name.find("XCTest") == -1 and lib_name.find("Unittest") == -1:

                    swift_libraries[platform].append(lib_name);

    swift_all_libs = [set(swift_libraries['iphoneos']), set(swift_libraries['iphonesimul

    swift_universal_libs = list(set.intersection(*swift_all_libs));

    swift_macosx_libs = list(set(swift_libraries['macosx']) - set(swift_universal_libs))

    swift_iphoneos_libs = list(set(swift_libraries['iphoneos']) - set(swift_universal_li

    swift_iphonesimulator_libs = list(set(swift_libraries['iphonesimulator']) - set(swif

    print 'SWIFT_STDLIB_PATH = "$DT_TOOLCHAIN_DIR/usr/lib/swift/$PLATFORM_NAME"';

    print 'SWIFT_UNIVERSAL_LIBS = '+make_linker_string(swift_universal_libs)+'\n';

    # iphoneos

    print 'SWIFT_IPHONEOS_LIBS = '+make_linker_string(swift_iphoneos_libs)+'\n';



XCConfig File:

This approach allows the developer to listen to Apple's Q&A document of

disabling the EMBEDDED_CONTENT_CONTAINS_SWIFT  on all targets except for

the app target. The XCConfig file adds additional linker flags to include the Swift

runtime libraries so that they are detected and only copied once into the app's

bundle.

However, this fix has a lot of downsides to it:

Hard-coding the names of the Swift runtime libraries

Does not properly support XCTest or the SwiftStdlibUnittest libraries

Copies all Swift runtime libraries into the app bundle instead of only the

required ones

####CocoaPods Fix Samuel Giddins created a fix which addresses the problem

in a more direct and less fragile way. By iterating over all of the dependencies of

an app and running otool  on them for linked libraries, it is possible to create

a list of just the required frameworks to be linked. This approach ignores the

setting of EMBEDDED_CONTENT_CONTAINS_SWIFT  flag and finds and copies in

only the required Swift runtime libraries as needed to the app's bundle in the 

Frameworks/  directory. If you have frameworks with the 

    # iphonesimulator

    print 'SWIFT_IPHONESIMULATOR_LIBS = '+make_linker_string(swift_iphonesimulator_libs)

    # macosx

    print 'SWIFT_MACOSX_LIBS = '+make_linker_string(swift_macosx_libs)+'\n';

    # OTHER_LDFLAGS

    print 'OTHER_LDFLAGS[sdk=iphoneos*] = ${SWIFT_UNIVERSAL_LIBS} ${SWIFT_IPHONEOS_LIBS}

    print 'OTHER_LDFLAGS[sdk=iphonesimulator*] = ${SWIFT_UNIVERSAL_LIBS} ${SWIFT_IPHONES

    print 'OTHER_LDFLAGS[sdk=macosx*] = ${SWIFT_UNIVERSAL_LIBS} ${SWIFT_MACOSX_LIBS}';

if __name__ == "__main__":

    main(sys.argv[1:]);

SWIFT_STDLIB_PATH = "$DT_TOOLCHAIN_DIR/usr/lib/swift/$PLATFORM_NAME"

SWIFT_UNIVERSAL_LIBS = -Wl,${SWIFT_STDLIB_PATH}/libswiftCoreGraphics.dylib -Wl,${SWIFT_S

SWIFT_IPHONEOS_LIBS = -Wl,${SWIFT_STDLIB_PATH}/libswiftCoreImage.dylib -Wl,${SWIFT_STDLI

SWIFT_IPHONESIMULATOR_LIBS = -Wl,${SWIFT_STDLIB_PATH}/libswiftCoreImage.dylib -Wl,${SWIF

SWIFT_MACOSX_LIBS = -Wl,${SWIFT_STDLIB_PATH}/libswiftAppKit.dylib -Wl,${SWIFT_STDLIB_PAT

OTHER_LDFLAGS[sdk=iphoneos*] = ${SWIFT_UNIVERSAL_LIBS} ${SWIFT_IPHONEOS_LIBS}

OTHER_LDFLAGS[sdk=iphonesimulator*] = ${SWIFT_UNIVERSAL_LIBS} ${SWIFT_IPHONESIMULATOR_LI

OTHER_LDFLAGS[sdk=macosx*] = ${SWIFT_UNIVERSAL_LIBS} ${SWIFT_MACOSX_LIBS}

• 

• 

• 



EMBEDDED_CONTENT_CONTAINS_SWIFT  flag set to YES , then those will also

have copies of the Swift runtime libraries embedded in them. This is a more

holistic approach to solving this problem.

####Apple Fix I think the most ideal solution would be for Apple to remove this

problem entirely by analyzing the linked paths on from swift-stdlib-tool

and then step through the dependencies to avoid copying the Swift libraries into

the app bundle multiple times. This is the solution that needs to happen

automatically so that there is no need for developers to deal with management

of language runtime dependencies ever.

I think that the existing behavior of swift-stdlib-tool  needs to be changed

from only looking at the binary it is pointed at, to also descend to do checking

and validation of the dependencies of any additionally linked library so that the

Swift runtime doesn't get duplicated unnecessarily into the app bundle.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog 

[ home | parent | top ]

https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Technical Q&A QA1881 v2 - Embedding Content with Swift in Objective-C

