
Recently Apple announced two new development platforms, watchOS and tvOS.

As a result developers are scrambling to try out these new platforms and add

support to their existing libraries and apps.

This might be a familiar sight to you. While this is an entirely viable way to build

your code for multiple platforms, it does introduce a number of complications

that greatly increase the risk of breaking something due to user error.

Source files must be added to all the framework targets by hand, same goes for

any new files you add. Since this is very easy to miss doing from the new file

dialog, it is generally discouraged to add the same file to multiple targets (if

what the targets are building are not significantly different). You not only have

to maintain the code for the frameworks individually, but also all the build

settings for them. This plus adding tests for all the targets quickly becomes an

unreasonable goal to set for any development team without breaking all the

frameworks into separate entities -- and away from a singular code-base.

While having separate targets makes it easier to explicitly link your application

to your framework, it doesn't make understanding the frameworks any easier.

While working on the code you may understand that the separate targets only

Using Xcode Targets

Background

Repeated Actions

Understanding Intent

exist as a convenience of explicit linking at the expense of some technical debt

of maintaining that code. However in 6 months time, is that still the case? Have

your separate frameworks become distinctly different for each platform, or has

code been written multiple times because someone forgot to add a file and

didn't have time to audit if the code was already written somewhere else? While

good documentation can cover these cases to a degree, it doesn't make

understanding the whole system any easier.

The multiple targets approach also has little to no future compatibility support.

If yet another development platform is introduced you are going to compound

the problems of repeated actions for maintainability and understanding intent

with another target that may cause you to deviate from the original architecture

style entirely.

In Xcode, a target contains a collection of:

files

environment variables

build system rules

build system actions

The target also defines the relationship between all these collections. First by

grouping the files with build system actions, this organization is called "Build

Phases". These phases are very generic definitions of actions. Then the target

will then filter each file through the set of build rules to resolve the specific

action to take based on the phase it is in. Finally, the environment variables

(build settings) are applied to the actions to invoke additional functionality.

The intent of a target is to define an output (build product) for a set of

conditions. Over time these conditions can become extremely complex,

duplicating that complexity with minor changes across all targets can become a

recipe for disaster. Fortunately Xcode provides a number of tools that allow us

to consolidate the complexity into a single place where it is easier to manage.

Build configurations are a way to conditionally manage build settings per target.

Future Compatibility

Targets

•

•

•

•

Managing Targets

Build Configurations

Under the "Build Settings" panel of a target you can expand each setting to

select a different option per configuration. Commonly they are used to change

the signing identity and provisioning profile based on building "Debug" vs

"Release". However they can be put to a lot more use for you.

Accessing the settings for your project, settings that are configured here will be

inherited by all the targets in your project.

Accessing the build configuration editor for this project file.

When adding new build configurations, new entries will be added for each target

in the project file. As mentioned in section about build configurations in

"Managing Xcode", each target can have a different xcconfig file assigned to it

based on build configuration. If you have multiple targets that differ in how the

settings are configured rather than differing in code implementation, then using

build configurations to abstract those changes can help prevent introducing the

complexity of another target to your project file.

Note: Please take note of the dropdown menu underneath the list of build

configurations. When running xcodebuild it will automatically pick a build

configuration if there is none specified. This dropdown menu selects the default

configuration it will use. When performing a build via xcodebuild and not the

Xcode GUI (application) you should always specify the build configuration name

to use. This should be done even if you are specifying a scheme for it to build.

Switching from using multiple tagets to multiple build configurations is going to

be non-trivial for a project of any size, and I wouldn't recommend doing that

directly. To make the transition easier you should first migrate your existing

build settings per target into their own xcconfig file.

If you haven't read my post on xcconfig files yet, please check it out before

continuing.

xcconfig files

https://pewpewthespells.com/managing_xcode.html#buildconf
https://pewpewthespells.com/xcconfig_guide.html

While changing anything in a working build system is a risk, there are some big

benefits you get for using xcconfig files instead of build settings stored on the

project file.

Xcode.app cannot change your build settings, build settings can be

changed on the project file, these don't impact the values in the xcconfig

file.

The xcconfig files exist as separate plain text files, this means they will

rarely conflict when merging changes and will be easy to resolve when they

do (unlike project files).

The build settings panel in Xcode has no ability to undo changes. Since

xcconfig files are regular text files they will have undo history and the

ability to add comments; this makes editing your project settings a less

daunting task and can communicate more about your build requirements.

Migrating build settings from the project file to an xcconfig file is made very

simple. For the following steps I would recommend you open the build settings

panel for the desired target in Xcode and select the options "All" and "Levels" to

display the levels of build setting inheritance. You should be focusing on the

values that are listed under the column with the name of your target in it. Look

for cells in this column that are green and have bold text. These are values set

for this target specifically.

Start by creating a new xcconfig file and add it to your project.

Open that as a separate window, you will need to see this along-side the

settings of the target.

1.

2.

3.

1.

2.

Select the row of the setting you want to migrate out of the project file and

into the xcconfig file.

Perform a Copy (cmd+C or from the menu Edit->Copy).

Now select the xcconfig file and paste, you will get the setting and the

values based on configuration.

Note: The copy action isn't very "smart" so sometimes you may need to expand

the build setting and select the row of the build configuration for that setting to

extract the value. Sometimes you cannot get the right value and it may have to

be recreated entirely (please file a radar on this). As mentioned please consult

my guide to xcconfig files (linked to at the top of this section) as this can be

challenging to migrate complex projects.

Warning: You may run into some problems with having pairing the test target

with the framework. I am going to try to get another post up with a holistic

explanation of migrating build settings to xcconfig files as soon as possible and

link to it here. Until then be aware this can cause issues due to Xcode wanting

to resolve test host targets by string name. This is a fault with Xcode not with

the targets or build configurations.

When you have copied all your settings specific to that target into the xcconfig

file, you can go back to the build configurations and assign the xcconfig file to

that target for a specific build configuration. Before doing anything else you

should back up your xcode project now. To make sure you set up the xcconfig

file correctly you will have to remove the values from the target. You can clear a

build setting by pressing the "delete" when selecting a row that has a green cell

in the target's column. If everything went well, the column named "Resolved"

(the left-most column in the build settings panel) will not change, because the

value assigned to the target should be pulled from the xcconfig file now.

Schemes are the final step in managing build configurations. Schemes are for

creating associations between types of build actions (Build, Run, Profile, Test,

Archive, Export). Xcode will helpfully automatically create new schemes for each

of your targets, but you don't have to let this dictate how you use schemes. The

important thing to understand about schemes is that they allow you to manage

not only the targets to build for a particular action but the build configuration

that those targets should use.

So to recap this:

3.

4.

5.

Schemes

A scheme can specify a single build configuration to be used for multiple

targets. This means that instead of having schemes for each framework and

then each application target, you can have a single scheme that tells a single

framework target to be built using a specific configuration and associated

xcconfig file (you can set this up to be able to change the requirements of

building based on target OS, so a single target could build for iOS, Mac,

watchOS, and tvOS) before building the application target. Doing this means

cutting the footprint of your code down significantly as well as removing the

complexity of managing multiple targets.

The ability to configure Xcode to work this way is by no means "new"

functionality. All the functionality mentioned here has existed since Xcode 4. If

you examine many of Apple's open source packages they are built using the

methods talked about in this post. Abstracting the steps of the build system like

this is a fairly standard practice. There are many ways to go about doing this

organization, this is only one way to reduce the complexity of interfacing with

the build system.

If you have any questions about this post or any other post, please check out

my Q&A.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

|-- Project File

 |-- Targets

 |-- Files

 |-- Build settings (these are configurable based on build configuration, will im

 |-- Build Configurations

 |-- xcconfig file is associated to each target in the project file for this spec

 |-- Schemes

 |-- Build Actions (Build, Run, Profile, Test, Archive, Export)

 |-- Targets (Built using a specific build configuration, this is configurata

https://github.com/samdmarshall/QandA
https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Using Xcode Targets
	Background
	Repeated Actions
	Understanding Intent
	Future Compatibility

	Targets
	Managing Targets
	Build Configurations
	xcconfig files
	Schemes

