
General Information

Syntax

#include Statements

Variable Assignment

Overriding

Inherit

Conditional Variable Assignment

SDK

Arch

Config

Variant

Dialect

Variable Substitution

Build Setting Inheritance

Resources

One of the least documented aspects of the configuration process are xcconfig

files. As of this writing there seem to be no documents provided by Apple that

explain how to use xcconfigs or why they exist. A xcconfig file is used as a

supplemental file to a specific build configuration. A build configuration can

have an associated xcconfig file, this allows for additional changes to the

target's build settings from outside the Xcode project editor.

↑ Table of Contents

The Unofficial Guide to xcconfig

files

Table of Contents

•

•

•

•

◦

◦

•

◦

◦

◦

◦

◦

•

•

•

General Information

xcconfig files follow a small set of syntax rules:

Comments:

start with // and continue until the end of the line.

there is no support for multi-line comments.

Include statements:

start with #include then have a path in double quotes. (See the

section #include Statements for more details)

Variables:

start with _ or an upper or lowercase letter.

can contain the following characters:

underscore _

numbers 0 through 9

letters a through z and A through Z

Assignment:

is done by use of = between the variable name and the value.

Lines:

each line is evaluated as a separate item, a single value cannot span

multiple lines.

If a line ends in ; then the semi-colon is ignored, this does not act as

a line delimiter.

Strings:

Can be represented with both double quotes " and single quotes '

If you violate any of the syntax rules, Xcode will ignore the xcconfig file entirely

and display a warning describing the problem.

↑ Table of Contents

While Xcode limits the assignment of one xcconfig file per target per build

configuration, you can import additional settings from other xcconfig files. To

import the contents of another xcconfig file the line must start #include then

followed by a file path that is inside of a set of double quotes.

Syntax

•

◦

◦

•

◦

•

◦

◦

▪

▪

▪

•

◦

•

◦

◦

•

◦

#include Statements

Both of the lines above are valid syntax, there does not need to be a space

separating the include statement from the path.

Xcode will search for file based on how the path starts:

Starts with /

This dictates that the file path is an absolute path on the file system

(/ is the root volume).

Example:

Starts with any other characters

This dictates that the file path is relative to the location of that xcconfig

file.

Example:

Starts with <DEVELOPER_DIR>

This is a special case that will allow you to specify a path based on the

value of $(DEVELOPER_DIR) .

Example:

↑ Table of Contents

Variables are assigned by placing an equals sign = after the variable name.

Any amount of whitespace (both a regular space and a tab are valid whitespace)

can exist between the variable name and the equals sign, as well between the

equals sign and the value that is being assigned.

#include "Debug.xcconfig"

#include"Shared.xcconfig"

•

◦

#include "/Users/sam/Documents/shared.xcconfig" // includes settings from "shared.xcconf

•

◦

#include "default.xcconfig" // includes settings from the "default.xcconfig" file in the

#include "../OtherConfigs/Shared.xxconfig" // includes a config file from one level up a

 // called "OtherConfigs"

•

◦

#include "<DEVELOPER_DIR>/Makefiles/CoreOS/Xcode/BSD.xcconfig"

Variable Assignment

https://pewpewthespells.com/blog/buildsettings.html#developer_dir
https://pewpewthespells.com/blog/buildsettings.html#developer_dir

To use the default value for that variable, do not put anything after the equals

sign. This will use the default for that variable or will not perform an

assignment. This behavior should be used when wanting to select values that

are under "Automatic" headings in the value drop-downs in the build settings.

Build setting variables set on the Project or Target level can be overridden by

reassigning the value of that variable in a xcconfig file.

When compiling with this, the -ObjC value is going to be overridden by the

new value -framework Security .

For more information on how variable assignment priority works, please see the

section Build Setting Inheritance.

There is a special variable that can be used that will allow you to get the

existing value of the variable so variable assignment isn't destructive.

When compiling with this, the value of OTHER_LDFLAGS is going to be

-ObjC -framework Security .

For more information on how variable assignment priority works, please see the

section Build Setting Inheritance.

↑ Table of Contents

In addition to regular variable assignment, you can have variables be assigned if

a set of conditions are met. For example, changing the linker flags used based

Overriding

// Variable set in the project file

OTHER_LDFLAGS = -ObjC

// lib.xcconfig

OTHER_LDFLAGS = -framework Security

Inherit

// Variable set in the project file

OTHER_LDFLAGS = -ObjC

// lib.xcconfig

OTHER_LDFLAGS = $(inherited) -framework Security

Conditional Variable Assignment

on what OS version you are building for. The value check of the conditional

supports the wildcard character * to perfom evaluation.

Something to take note of, the conditional assignment takes precedence over

other assignments. For example:

If your target is building for OS X and iOS the build settings will look like this:

Multiple conditionals can be combined to create very specific variable

assignments. For example:

There are two style of multi-condition assignment:

and

There are 5 known conditional "flavours" that can be checked against: SDK,

Architecture, Build Configuration name, Build Variant, and Dialect.

The sdk conditional assignment operates based on the value of $(SDKROOT) .

This is used to configure values to be assigned based on the selected SDK.

FOO = bar

FOO[sdk=macosx*] = buzz

|-- FOO = bar

 |-- Any Mac SDK = buzz

 |-- Any iOS SDK = bar // this is going to inherit from the original assign

FOO[sdk=macosx*][arch=i386] = bar // This only gets assigned if building against an OS X

 // and targeting 32bit Intel architecture

FOO[sdk=<sdk>][arch=<arch>] = ...

FOO[sdk=<sdk>,arch=<arch>] = ...

SDK

https://pewpewthespells.com/blog/buildsettings.html#sdkroot
https://pewpewthespells.com/blog/buildsettings.html#sdkroot

The arch conditional assignment operates based on the value of

$(CURRENT_ARCH) . The $(CURRENT_ARCH) build setting comes from

$(ARCHS) .

The configuration conditional assignment operates based on the value of

$(CONFIGURATION) .

This will not behave as one might expect. Unlike using the [sdk=] or

[arch=] conditional assignments, the [config=] will also implicitly add

[sdk=*][arch=*] as conditions to satisfy for assignment. For example, the

following line:

really looks like:

While this doesn't look like it is a big deal, as the two additional conditions

should fall through successfully and only apply the value to the "Debug"

configuration -- this is not how Xcode resolves build setting assignment. What

this will do instead is create a subset of the specific build configuration where

the value will be assigned.

FOO[sdk=macosx10.8] = ... // For building against the 10.8 SDK

FOO[sdk=macosx10.9] = ... // For building against the 10.9 SDK

FOO[sdk=macosx10.10] = ... // For building against the 10.10 SDK

FOO[sdk=macosx*] = ... // For building against any Mac OS X SDK

FOO[sdk=iphoneos*] = ... // For building against any iOS SDK

FOO[sdk=iphonesimulator*] = ... // For building against any iOS Simulator SDK

FOO[sdk=*] = ... // For building against any SDK

Arch

FOO[arch=i386] = ... // For building to target 32bit Intel

FOO[arch=x86_64] = ... // For building to target 64bit Intel

FOO[arch=armv7] = ... // For building to target ARM v7

FOO[arch=arm64] = ... // For building to target ARM64

FOO[arch=arm*] = ... // For building to target any ARM

FOO[arch=*] = ... // For building to target any architecture

Config

ONLY_ACTIVE_ARCH[config=Debug] = YES

ONLY_ACTIVE_ARCH[config=Debug][sdk=*][arch=*] = YES

https://pewpewthespells.com/blog/buildsettings.html#current_arch
https://pewpewthespells.com/blog/buildsettings.html#current_arch
https://pewpewthespells.com/blog/buildsettings.html#archs
https://pewpewthespells.com/blog/buildsettings.html#archs
https://pewpewthespells.com/blog/buildsettings.html#configuration
https://pewpewthespells.com/blog/buildsettings.html#configuration

What you most likely want:

What Xcode will see:

This is significant because when performing a build from a scheme, it will use

the assigned build configuration to query for the value to use for all the build

settings. Since this won't match the parameters as defined by the subset value

created from [config=] , it uses the top level value based on the

configuration. This means whatever value is manually set there or the inherited

default value from the next level up (Target/Project/SDK). Because of this, using

[config=] should almost never be the desired behavior when assigning

values based on build configuration name.

Please see the section Variable Substitution to see how to assign variables

based on build configuration name.

The variant conditional assignement operates on the value of

$(CURRENT_VARIANT) . The $(CURRENT_VARIANT) build setting comes from

$(BUILD_VARIANTS) .

This option shouldn't be used.

While this is a valid conditional check, it is unclear what it uses to evaluate.

This option shouldn't be used.

↑ Table of Contents

|-- VALUE

 |-- Debug <YOUR DEBUG VALUE>

 |-- Release <YOUR RELEASE VALUE>

|-- VALUE

 |-- Debug <EMPTY OR DEFAULT VALUE>

 |-- Any SDK OR Any Arch <YOUR DEBUG VALUE>

 |-- Release <EMPTY OR DEFAULT VALUE>

 |-- Any SDK OR Any Arch <YOUR RELEASE VALUE>

Variant

Dialect

https://pewpewthespells.com/blog/buildsettings.html#build_variants
https://pewpewthespells.com/blog/buildsettings.html#build_variants

Variable assignment is not limited to values. You can reference the values of

other variables to be used in assignment. There are two ways to reference

another variable:

For variable named FOO :

$(FOO)

${FOO}

Both styles are interchangeable for all variables, including the special

$(inherited) variable.

Example:

Additionally, variable assignment can become more complex that the scope of

the conditional assignment checks allow. To perform more complex conditional

variable assignments you can use variable substitution.

For example, you have an application target and a unit test target. You want to

change the version number based on if it is compiling the app or the unit test.

Since the conditional assignment checks won't be able to look at those details

for you that leaves two options. Either create separate xcconfig files for the

application and the unit test targets, or use variable substitution to assign

based on another variable.

Example:

Xcode will assign this by first resolving the value of $(WRAPPER_EXTENSION) .

For building an application the value of this variable will be app and for a unit

test it will be xctest . This will then create a variable reference to either

$(CURRENT_PROJECT_VERSION_app) or

$(CURRENT_PROJECT_VERSION_xctest) and assign the respective value

associated with that to CURRENT_PROJECT_VERSION . If you were to build this

while $(WRAPPER_EXTENSION) was set to nothing, this would create the

variable $(CURRENT_PROJECT_VERSION_) . Since there is no declaration of that

Variable Substitution

•

•

HELLO = hello

WORLD = world

FOO = $(HELLO) ${WORLD} // The value of FOO is "hello world"

CURRENT_PROJECT_VERSION_app = 15.3.9 // Application version number

CURRENT_PROJECT_VERSION_xctest = 1.0.0 // Unit Test version number

CURRENT_PROJECT_VERSION = $(CURRENT_PROJECT_VERSION_$(WRAPPER_EXTENSION))

value, nothing would be assigned to override the value of

CURRENT_PROJECT_VERSION .

This method of conditional assignment is very useful and powerful for

organizing build settings. Please keep in mind that while the right side of the

assignment operator can contain any type of character, the variable names

themselves cannot. Please refer to the Syntax section for the specifications

surrounding the valid characters that can be used in variable names.

NOTE: There is a way to work around the limitations of invalid character names.

If you edit the project.pbxproj file in the Xcode project file and add new

values to the relevant XCBuildConfiguration objects by enclosing the name in

double quotes, the variables will register as valid and be displayed under the

"User-Defined" settings section in the Xcode editor. While these settings are

visible and can be used to substitute values elsewhere in the project or in the

xcconfig files this is not supported behavior. Setting with names that contain

invalid characters will not get properly exported to be used in other parts of the

build system.

↑ Table of Contents

Disclaimer: This may contain some inaccuracies, behavior documented as

reverse engineered from Xcode.

Xcode represents build settings as a set of "levels" that will have a single

resolved value that is used for the build process. The value that each build

setting variable has is inherited from the previous level.

Inheritance is performed in the following order (least to highest prescedence):

Platform defaults

Project file

xcconfig file for the Project file

Target

xcconfig file for the Target

Value assignment is performed in the following order (least to highest

prescedence):

Platform defaults

xcconfig for the Project file

Project file

Build Setting Inheritance

•

•

•

•

•

•

•

•

xcconfig for the Target

Target

The distinction between the ordering of these two operations is important to

make note of. The difference in behavior can lead to some odd bugs in

performing variable assignment.

Example: The Target on a Project file defines PRODUCT_NAME as MyApp . There

is a xcconfig file assigned to this target that contains the following:

Inheritance only works between levels, variable assignments perform on the

same level will override the previous assignment. You cannot use

$(inherited) in an xcconfig file to get the value assigned for a variable from

an imported xcconfig file. To use that value you must use separate names and

reference those variables in assignment.

↑ Table of Contents

Legacy Xcode Build System Reference (mirror)

↑ Table of Contents

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

•

•

//

// Config.xcconfig

//

PRODUCT_NAME = testing

PRODUCT_NAME_ORIGINAL = $(PRODUCT_NAME) // The value of `PRODUCT_NAME_ORIGINAL` would se

 // as assigned by the line before in the xcconfi

 // is "MyApp", because the inheritance takes pre

 // over assignment.

// ...

FOO_MyApp = MyAppsName

FOO_testing = MyAppsNewName

BAR = $(FOO_$(PRODUCT_NAME)) // This will also use the value "MyApp" for "PRO

 // and resolve to be "$(FOO_MyApp)".

Resources

•

https://pewpewthespells.com/media/blog/xcconfig_guide/Xcode_Build_System.pdf

donate to support this blog

[home | parent | top]

https://cash.me/$samanthademi
https://cash.me/$samanthademi

	The Unofficial Guide to xcconfig files
	Table of Contents
	General Information
	Syntax
	#include Statements
	Variable Assignment
	Overriding
	Inherit

	Conditional Variable Assignment
	SDK
	Arch
	Config
	Variant
	Dialect

	Variable Substitution
	Build Setting Inheritance
	Resources

