
Xcode (by default) uses "Unique" build locations for each project and stores

them in a folder called "DerivedData". This folder is located (by default) at

~/Library/Developer/Xcode/DerivedData/ . Within that folder each folder

that is labeled with the following format:

[name of the root project/workspace]-[28 character identifier]

There seemed to be no way to resolve what that identifier was in relation to the

root project file that was open. This seemed to be barely mentioned online and

only refered to as "application hash". After some exploration in Hopper, I found

the function call that creates the unique identifier. Below is a reconstructed of

the function hashStringForPath in DevToolsCore.framework:

Xcode DerivedData Hashes

#import <Foundation/Foundation.h>

#import <CommonCrypto/CommonCrypto.h>

// this function is used to swap byte ordering of a 64bit integer

uint64_t swap_uint64(uint64_t val) {

 val = ((val << 8) & 0xFF00FF00FF00FF00ULL) | ((val >> 8) & 0x00FF00FF00FF00FFULL);

 val = ((val << 16) & 0xFFFF0000FFFF0000ULL) | ((val >> 16) & 0x0000FFFF0000FFFFULL

 return (val << 32) | (val >> 32);

}

/*!

 @function hashStringForPath

 Create the unique identifier string for a Xcode project path

 @param path (input) string path to the ".xcodeproj" or ".xcworkspace" file

 @result NSString* of the identifier

*/

NSString * hashStringForPath(NSString *path) {

 // using uint64_t[2] for ease of use, since it is the same size as char[CC_MD5_DIGES

 uint64_t digest[2] = {0};

 // char array that will contain the identifier

 unsigned char resultStr[28] = {0};

 // setup md5 context

 CC_MD5_CTX md5;

 CC_MD5_Init(&md5);

 // get the UTF8 string of the path

 const char *c_path = [path UTF8String];

 // get length of the path string

 unsigned long length = strlen(c_path);

 // update the md5 context with the full path string

 CC_MD5_Update (&md5, c_path, length);

 // finalize working with the md5 context and store into the digest

 CC_MD5_Final (digest, &md5);

 // take the first 8 bytes of the digest and swap byte order

 uint64_t startValue = swap_uint64(digest[0]);

 // for indexes 13->0

 int index = 13;

 do {

 // take 'startValue' mod 26 (restrict to alphabetic) and add based 'a'

 resultStr[index] = (char)((startValue % 26) + 'a');

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

 // divide 'startValue' by 26

 startValue /= 26;

 index--;

 } while (index >= 0);

 // The second loop, this time using the last 8 bytes

 // repeating the same process as before but over indexes 27->14

 startValue = swap_uint64(digest[1]);

 index = 27;

 do {

 resultStr[index] = (char)((startValue % 26) + 'a');

 startValue /= 26;

 index--;

 } while (index > 13);

 // create a new string from the 'resultStr' char array and return

 return [[[NSString alloc] initWithBytes:resultStr length:28 encoding:NSUTF8StringEnc

}

https://cash.me/$samanthademi
https://cash.me/$samanthademi

	Xcode DerivedData Hashes

